
GNU Scientific Library (GSL)

Http://www.gnu.org/software/gsl/

GSL Team

M.Galassi, J. Theiler, G. Jungman (LANL)
Brian Gough (GNU)

What is GSL ?

� Numerical library for the GNU system
� Development started in 1996
� Written in ANSI C
� Free software under the GNU GPL
� Relase 1.0 was in 2001
� About 1000 functions (rngs, special fns, ...)
� Currently at release 1.3

What's GNU?

� Project to create free Unix operating
system

� Started in 1984
� In use today: GNU/Linux
� Demonstration of the viability of free

software model

What is Free Software?

� Four freedoms
� 0) to run the program
� 1) to study the program
� 2) to modify the program
� 3) to share the program

Why Free Software?

� Copyright system invented several
centuries ago

� Designed for books
� Software is different

� Difference between source and object files
� Development through incremental

improvements
� Different system appropriate

Software Model

� Software should be considered as a field
of applied mathematics/computer science

� Everyone works together to solve problems
� Everyone benefits from the results

GSL Motivation

� Needed a numerical library that could be
used in free software (GPL'd) applications

� Existing Libraries
� Proprietary: NAG, IMSL
� Numerical Recipes (not free)
�

� Proprietary licenses incompatible with
large-scale scientific collaboration

Functionality (Ported Packages)

� Ports of well known public domain Fortran
packages

� FFTPACK
� MINPACK
� QUADPACK
� MISCFUN
� VEGAS / MISER
� BLAS (CBLAS)

Functionality

Complex Numbers Roots of Polynomials Special Functions

Vectors and Matrices Permutations Sorting

BLAS Support Linear Algebra Eigensystems

Fast Fourier Transforms Quadrature Random Numbers

Quasi-Random Sequences Random Distributions Statistics

Histograms N-Tuples Monte Carlo Integration

Simulated Annealing Differential Equations Interpolation

Numerical Differentiation Chebyshev Approximation Series Acceleration

Discrete Hankel Transform Root-Finding Minimization

Least-Squares Fitting Physical Constants IEEE Floating-Point

Example: Special Functions

An example of a Bessel function J
0
(5),

#include <stdio.h>
#include <gsl/gsl_sf_bessel.h>
int
main (void)
{
 double x = 5.0;
 double y = gsl_sf_bessel_J0 (x);
 printf ("J0(%g) = %.18e\n", x, y);
 return 0;
}

Output J0(5) = -1.775967713143382920e-01

DESIGN

� One language: C
� Object oriented
� Algorithm Components
� Layered (BLAS)
� Reliable error estimation
� Testing

See: GSL Design Document http://sources
.redhat.com/gsl

C Language

� GNU's universal language / interface
� support any platform with ANSI C compiler
� Compatible with GNU software, GNOME, GTK, ...

� Easy for binding to other languages
� Python
� Scheme (GNU GUILE)
� C++ (extern "C")

� Well established standard by 1996

Object Oriented Design
� Represent class of algorithm by a C struct

with internal state (Kiem-Phong Vo "An Architecture for
Reusable Libraries" - VMALLOC, CDT, SFIO)

� Example: random number generator:
gsl_rng_type * T =
gsl_rng * r = gsl_rng_alloc (T);
double x = gsl_randist_gaussian (r, sigma) ;

� 'T' contains function pointers to
implementation
struct { void (*set) (void * state, ...);

 int (*get) (void * state, ...); }
..

Object Oriented Design (cont)
� Use with

� RNGs (and Quasi-RNGs)
� Root finding (1d and Multidimensional)
� Minimisation (1d and Multidimensional)
� Non-linear least squares fitting
� Differential Equations
� Interpolation / splines

Algorithm Components
� Algorithms broken down into components

� Initialise
� Iterate
� Test

� User drives the algorithm (no callbacks)
gsl_multroot_fsolver * s;
s = gsl_multiroot_fsolver_alloc (T, &f, x);
do {
 iter++;
 status = gsl_multiroot_solver_iterate(s);
 if (status) break;
 status = gsl_multiroot_test_residual(s->f, 1e-3);
} while (status == GSL_CONTINUE && iter < 1000);

BLAS

� Library built over BLAS for efficiency
� GSL supplies default BLAS (-lgslcblas)

� written in C
� supports all operations (Level 1, 2, 3)
� portable, no machine specific optimisation

� Recommend ATLAS for performance
� automatically tuned BLAS
� free software

Example: Error Estimation
� Reliable error estimates are required
� Example J

0
(5) with error estimate,

#include <stdio.h>
#include <gsl/gsl_sf_bessel.h>
int main (void) {
 double x = 5.0;
 gsl_sf_result r; /* { result.val, result.err } */
 int status = gsl_sf_bessel_J0_e (x, &r);
 printf ("J0(%g) = %.18e +/- %g\n", x, r.val, r.err);
 return 0;
}

 J0(5) = -1.775967713143382642e-01 +/- 1.93021e-16

Licensing

� GPL vs LGPL ("Lesser/Library GPL")
� LGPL gives too much away
� Advantages of the GPL

� contributors can retain ownership (dual
licensing)

� encourages users to release free software

Future

� Need better organisation of users and
developers

� Editorial board
� Consortium of users

