GNU Scientific Library (GSL)

Http://www.gnu.org/software/gsl/
GSL Team

M.Galassi, J. Theiler, G. Jungman (LANL)
Brian Gough (GNU)

What 1s GSL ?

Numerical library for the GNU system
Development started in 1996

Written in ANSI C

Free software under the GNU GPL

Relase 1.0 was in 2001

About 1000 functions (rngs, special fns, ...)
Currently at release 1.3

What's GNU?

Project to create free Unix operating
system

Started in 1984
In use today: GNU/Linux

Demonstration of the viability of free
software model

What is Free Software?

e Four freedoms

- 0) to run the program

- 1) to study the program
- 2) to modify the program
- 3) to share the program

Why Free Software?

Copyright system invented several
centuries ago

Designed for books
Software iIs different

- Difference between source and object files

- Development through incremental
Improvements

Different system appropriate

Software Model

 Software should be considered as a field
of applied mathematics/computer science

- Everyone works together to solve problems
- Everyone benefits from the results

GSL Motivation

* Needed a numerical library that could be
used in free software (GPL'd) applications

* Existing Libraries
- Proprietary: NAG, IMSL
- Numerical Recipes (not free)

* Proprietary licenses incompatible with
large-scale scientific collaboration

Functionality (Ported Packages)

* Ports of well known public domain Fortran
packages

- FFTPACK

- MINPACK

- QUADPACK

- MISCFUN

- VEGAS / MISER
- BLAS (CBLAS)

Functionality

Complex Numbers Roots of Polynomials Special Functions
Vectors and Matrices Permutations Sorting

BLAS Support Linear Algebra Eigensystems

Fast Fourier Transforms Quadrature Random Numbers
Quasi-Random Sequences Random Distributions Statistics

Histograms N-Tuples Monte Carlo Integration
Simulated Annealing Differential Equations Interpolation

Numerical Differentiation Chebyshev Approximation Series Acceleration
Discrete Hankel Transform Root-Finding Minimization

Least-Squares Fitting Physical Constants IEEE Floating-Point

Example: Special Functions

An example of a Bessel function J (5),

#i ncl ude <stdi o. h>
#i ncl ude <gsl/gsl sf bessel. h>

| nt
mai n (voi d)
{
double x = 5.0;
double y = gsl _sf_bessel _JO (x);

printf ("JO(%) = % 18e\n", X, Vy);
return O;

}

Qut put JO(5) = -1.775967713143382920e-01

DESIGN

* One language: C

* Object oriented

* Algorithm Components
* Layered (BLAS)

* Reliable error estimation
* Testing

See: GSL Design Document http://sources
redhat.com/gsl|

C Language

* GNU's universal language / interface
- support any platform with ANSI C compiler

- Compatible with GNU software, GNOME, GTK, ...

* Easy for binding to other languages
- Python
- Scheme (GNU GUILE)
- C++ (extern"C")

* Well established standard by 1996

Object Oriented Design

* Represent class of algorithm by a C struct

with internal state (Kiem-Phong Vo "An Architecture for
Reusable Libraries" - VMALLOC, CDT, SFIO)

* Example: random number generator:
gsl _rng type * T =
gsl rng * r = gsl _rng _alloc (T);
doubl e x = gsl _randi st _gaussian (r, signha)

* 'T' contains function pointers to

Implementation

struct { void (*set) (void * state, ...);
int (*get) (void * state, ...); }

Object Oriented Design (cont)

e Use with

- RNGs (and Quasi-RNGS)

- Root finding (1d and Multidimensional)
- Minimisation (1d and Multidimensional)
- Non-linear least squares fitting

- Differential Equations

- Interpolation / splines

Algorithm Components

* Algorithms broken down into components
- Initialise
- lterate

- Test
* User drives the algorithm (no callbacks)

gsl _multroot fsolver * s;
s = gsl _multiroot _fsolver_alloc (T, &, x);
do {
| ter++;
status = gsl _nmultiroot _solver iterate(s);
| f (status) break;
status = gsl _nmultiroot test residual (s->f, le-3);
} while (status == GSL_CONTI NUE && iter < 1000);

BLAS

* Library built over BLAS for efficiency
* GSL supplies default BLAS (-lgslcblas)

- written in C
- supports all operations (Level 1, 2, 3)
- portable, no machine specific optimisation

* Recommend ATLAS for performance

- automatically tuned BLAS
- free software

Example: Error Estimation

* Reliable error estimates are required

« Example J (5) with error estimate,

#i ncl ude <stdi o. h>
#i ncl ude <gsl/gsl sf bessel. h>
Int main (void) {
double x = 5.0;
gsl _sf result r; [/* { result.val, result.err } */

Int status = gsl _sf bessel JO e (x, &r);
printf ("JO(%) = %18e +/- %@\n", X, r.val, r.err);
return O;

}

JO(5) = -1.775967713143382642e-01 +/- 1.93021e-16

Licensing

* GPL vs LGPL ("Lesser/Library GPL")
* LGPL gives too much away

* Advantages of the GPL

— contributors can retain ownership (dual
licensing)

— encourages users to release free software

Future

* Need better organisation of users and
developers

- Editorial board
— Consortium of users

