High-Level System Design Using Foresight

Giovanna Di Marzo Serugendo IT / CE

IT Seminar/November 2000

Outline

- Development Process
- HW/SW Co-Design
- Foresight: a Modelling and Simulation tool
- ALICE DAQ System

Development Process (1)

Separate Functionality from Architecture

 Design system functionality before thinking at hardware/software implementation details

Formal Specification and Verification

- Mathematical definition of system (unambiguous)
- Semantics of specification provides a model
- Behaviour of model = behaviour of system
- Verification: model behaves correctly (simulation, model checking)

Development Process (2)

First Phase: Functional Requirements

- Abstract specification: interfaces, functionality
- Verification: incomplete/inconsistent functional requirements, performance problems, design errors
- Analysis: critical parameters, maximum (minimum) performances, particular conditions

Second Phase: Architectural Concerns

- **Detailed specifications**: algorithms, hardware choices, alternative architectures
- Verification, analysis: check requirements and performances

HW/SW Co-design

Foresight Systems, Inc.

System Design

- Foresight tool
- Specification Execution
- System Co-design
 - Foresight co-design tool
 - Foresight specification with hw/sw components
 - Specification Execution

HW/SW Components

- HDL simulation environment
- Seamless CVE

Foresight (1)

Foresight Tool

System Level Modeling and Simulation Tool

Specification

- Hierarchical Specifications
- Data Flow Diagrams (event-driven processes, events, control)
- State Transitions
- Mini-specs
- Real-time parameters

Foresight (2)

Analysis

• Type checking, input/output checking, syntax errors

Execution of Specification (Simulation)

- Real-time execution of specification
- Stand-alone executable specification
- Animation of Diagrams
- Real-time constraint validation
- Debugging functions (breakpoints, monitors windows)
- Simulation is NOT formal verification !
- Works on Sun workstation

ALICE DAQ

Model of whole ALICE DAQ System

- Trigger System (L0, L1, L2)
- Trigger and Tracking Detectors
- DAQ (with sub-event building, event building, storage)
- Parameters (buffer sizes, etc.)

Evaluation of Performances

- Whole system: maximal bandwidth / real bandwidth
- For each detector: buffer occupancy, bandwidth usage

Alternative Algorithms

- Event building computing
- L2 trigger decision

ALICE: Overall System

IT Seminar/November 2000

ALICE: Tracking Detectors

ALICE: FSM, Mini-Spec

Outputs: bandwidth rate: Static locals: total_data_size;

total_data_size:=0.0;

total_data_size:=total_data_size + data.data_type.size; bandwidth_rate:=total_data_size/gettime();

Results

Maximal Bandwidth

	LO	L1	L2
Central	137	133	92
Dimuon	462	457	585
Dielectron	159	152	197
Minbias	747	714	409
Misc	203	197	
Interaction	1997		

		Buffer Full	Bandwidth	Matex imum
After 1 sec (6038 ev)	TPC	23%	14200 MB/s	18000Mb/s
Fynected at I 2:	TRD	43%	1627 MB/s	1800MB/s
Expected at L2.	/ / / /	/ / / /		

	С	MB	DM	DIEL	Total
L2	20 Hz	20 Hz	650 Hz	200 Hz	890 Hz

IT Seminar/November 2000

Conclusion

Separate Functionality from Architecture

Foresight Systems provides integrated tools

- Formal Specification and Execution
- Seamless replacement of formal components by hardware/software components
- http://www.nuthena.com/

Advantage

- Correct errors before implementation
- Think about the functional level (correct interfaces)