
1
1

CERN IT Seminar

High Performance Networking for
Wide Area Data Grids

Data Intensive Distributed Computing Group
Lawrence Berkeley National Laboratory

and
CERN IT/PDP/TE

Brian L. Tierney
(bltierney@lbl.gov)

CERN IT Seminar

Overview

• The Problem
– When building distributed, or “Grid” applications,

one often observes unexpectedly low performance
• the reasons for which are usually not obvious

– The bottlenecks can be in any of the following
components:

• the applications
• the operating systems
• the disks or network adapters on either the

sending or receiving host
• the network switches and routers, etc.

mailto:bltierney@lbl.gov

2
2

CERN IT Seminar

Bottleneck Analysis

• Distributed system users and developers often
assume the problem is the network
– This is often not true

• In our experience running distributed applications over
high-speed WANs, performance problems are due to:
– network problems: 30-40%
– host problems: 20%
– application design problems/bugs: 40-50%

• 50% client , 50% server

CERN IT Seminar

Overview

• Therefore Grid application developers must:
– understand all possible network and host issues
– thoroughly instrument all software.

• This talk will cover some issues and techniques for
performance tuning Grid applications
– TCP Tuning

• TCP buffer tuning
• other TCP issues
• network analysis tools

– Application Performance
• application design issues
• performance analysis using NetLogger

3
3

CERN IT Seminar

How TCP works:
A very short overview

• Congestion window (cwnd)
– The Larger the window size, higher the throughput

• Throughput = Window size /Round- trip Time
• Slow start

– exponentially increase the congestion window size until a
packet is lost

• this gets a rough estimate of the optimal congestion
window size

• Congestion avoidance
– additive increase: starting from the rough estimate, linearly

increase the congestion window size to probe for additional
available bandwidth

– multiplicative decrease: cut congestion window size
aggressively if a timeout occurs

CERN IT Seminar

TCP Overview

• Fast Retransmit: retransmit after 3 duplicate acks (got 3
additional packets without getting the one you are waiting for)
– this prevents expensive timeouts
– no need to slow start again

• At steady state, cwnd oscillates around the optimal window size
• With a retransmission timeout, slow start is triggered again

CWND

slow start:
exponential

increase
congestion
avoidance:

linear
increase

packet loss

time

retransmit:
slow start

again

timeout

4
4

CERN IT Seminar

TCP Performance Tuning Issues

• Getting good TCP performance over high latency
networks is hard!

• application must keep the pipe full, and the size of the
pipe is directly related to the network latency
– Example: from LBNL to ANL (3000km), there is an

OC12 network, and the one-way latency is 25ms
• Bandwidth = 67 MB/sec (OC12 = 622 Mb/s = ATM and IP

headers = 539 Mb/s for data
• Need 67 MBytes * .025 sec = 1.7 MB of data “in flight” to fill

the pipe

– Example: CERN to SLAC: latency = 84 ms, and
bandwidth will soon be upgraded to OC3

• assume end-to-end bandwidth of 12 MB/sec, need
1.008 MBytes to fill the pipe

CERN IT Seminar

Setting the TCP buffer sizes

• It is critical to use the optimal TCP send and receive
socket buffer sizes for the link you are using.
– if too small, the TCP congestion window will never

fully open up
– if too large, the sender can overrun the receiver, and

the TCP congestion window will shut down
• Default TCP buffer sizes are way too small for this type

of network
– default TCP send/receive buffers are typically 24 or

32 KB

– with 24 KB buffers, can get only 2.2% of the
available bandwidth!

5
5

CERN IT Seminar

Importance of TCP Tuning

LAN (rtt = 1ms)

WAN (rtt = 50ms)

Tuned for
LAN

Tuned for
WAN

Tuned for
Both

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

100

200

300

64KB TCP
Buffers

512 KB TCP
Buffers

264

44

152

112

264

112

CERN IT Seminar

TCP Buffer Tuning

• Must adjust buffer size in your applications:
 int skt, int sndsize;
 err = setsockopt(skt, SOL_SOCKET, SO_SNDBUF,
 (char *)&sndsize,(int)sizeof(sndsize));

and/or
 err = setsockopt(skt, SOL_SOCKET, SO_RCVBUF,
 (char *)&sndsize,(int)sizeof(sndsize));

• Also need to adjust system maximum and default buffer
sizes
– Example: in Linux, add to /etc/rc.d/rc.local

echo 8388608 > /proc/sys/net/core/wmem_max
 echo 8388608 > /proc/sys/net/core/rmem_max
 echo 65536 > /proc/sys/net/core/rmem_default
 echo 65536 > /proc/sys/net/core/wmem_default

• For More Info, see: http://www-didc.lbl.gov/tcp-wan.html

http://www-didc.lbl.gov/tcp-wan.html

6
6

CERN IT Seminar

Determining the Buffer Size

• The optimal buffer size is twice the bandwidth*delay product
of the link:

buffer size = 2 * bandwidth * delay
• ping can be used to get the delay (use the MTU size)

– e.g.: portnoy.lbl.gov(60)>ping -s lxplus.cern.ch 1500
64 bytes from lxplus012.cern.ch: icmp_seq=0. time=175. ms
64 bytes from lxplus012.cern.ch: icmp_seq=1. time=176. ms
64 bytes from lxplus012.cern.ch: icmp_seq=2. time=175. ms

• pipechar or pchar can be used to get the bandwidth of the
slowest hop in your path. (see next slides)

• Since ping gives the round trip time (RTT), this formula can
be used instead of the previous one:

buffer size = bandwidth * RTT

CERN IT Seminar

Buffer Size Example

• ping time = 55 ms (CERN to Rutherford Lab, UK)
• slowest network segment = 10 MBytes/sec

– (e.g.: the end-to-end network consists of all 100 BT
ethernet and OC3 (155 Mbps)

• TCP buffers should be:
– .055 sec * 10 MB/sec = 550 KBytes.

• Remember: default buffer size is usually only 24KB,
and default maximum buffer size is only 256KB !

7
7

CERN IT Seminar

pchar

• pchar is a reimplementation of the pathchar utility,
written by Van Jacobson.
– http://www.employees.org/~bmah/Software/pchar/
– attempts to characterize the bandwidth, latency,

and loss of links along an end-to-end path
• How it works:

– sends UDP packets of varying sizes and analyzes
ICMP messages produced by intermediate routers
along the path

– estimate the bandwidth and fixed round-trip delay
along the path by measuring the response time for
packets of different sizes

CERN IT Seminar

pchar details

• How it works (cont.)
– vary the TTL of the outgoing packets to get responses

from different intermediate routers.
• At each hop, pchar sends a number of packets of varying sizes

– attempt to isolate jitter caused by network queuing:
• determine the minimum response times for each packet size
• performs a simple linear regression fit to the minimum response

times.
• This fit yields the partial path bandwidth and round-trip time

estimates.

– To yield per-hop estimates, pchar computes the
differences in the linear regression parameter estimates
for two adjacent partial-path datasets

http://www.employees.org/~bmah/Software/pchar/

8
8

CERN IT Seminar

Sample pchar output

pchar to webr.cern.ch (137.138.28.228) using UDP/IPv4
Packet size increments by 32 to 1500
46 test(s) per repetition
32 repetition(s) per hop
 0: 131.243.2.11 (portnoy.lbl.gov)
 Partial loss: 0 / 1472 (0%)
 Partial char: rtt = 0.390510 ms, (b = 0.000262 ms/B), r2 = 0.992548
 stddev rtt = 0.002576, stddev b = 0.000003
 Partial queueing: avg = 0.000497 ms (1895 bytes)
 Hop char: rtt = 0.390510 ms, bw = 30505.978409 Kbps
 Hop queueing: avg = 0.000497 ms (1895 bytes)
 1: 131.243.2.1 (ir100gw-r2.lbl.gov)

Hop char: rtt = -0.157759 ms, bw = -94125.756786 Kbps
 2: 198.129.224.2 (lbl2-gig-e.es.net)
 Hop char: rtt = 53.943626 ms, bw = 70646.380067 Kbps
 3: 134.55.24.17 (chicago1-atms.es.net)
 Hop char: rtt = 1.125858 ms, bw = 27669.357365 Kbps
 4: 206.220.243.32 (206.220.243.32)
 Hop char: rtt = 109.612913 ms, bw = 35629.715463 Kbps

CERN IT Seminar

pchar output continued

5: 192.65.184.142 (cernh9-s5-0.cern.ch)
 Hop char: rtt = 0.633159 ms, bw = 27473.955920 Kbps
6: 192.65.185.1 (cgate2.cern.ch)
 Hop char: rtt = 0.273438 ms, bw = -137328.878155 Kbps
7: 192.65.184.65 (cgate1-dmz.cern.ch)
 Hop char: rtt = 0.002128 ms, bw = 32741.556372 Kbps
8: 128.141.211.1 (b513-b-rca86-1-gb0.cern.ch)
 Hop char: rtt = 0.113194 ms, bw = 79956.853379 Kbps
9: 194.12.131.6 (b513-c-rca86-1-bb1.cern.ch)
 Hop char: rtt = 0.004458 ms, bw = 29368.349559 Kbps
10: 137.138.28.228 (webr.cern.ch)
 Path length: 10 hops
 Path char: rtt = 165.941525 ms, r2 = 0.983821
 Path bottleneck: 27473.955920 Kbps
 Path pipe: 569883 bytes
 Path queueing: average = 0.002963 ms (55939 bytes)

9
9

CERN IT Seminar

pipechar

• Problems with pchar:
– takes a LONG time to run (typically 1 hour for an 8

hop path)
– often reports inaccurate results on high-speed (

e.g.: > OC3) links.

• New tool called pipechar
– http://www-didc.lbl.gov/pipechar/
– solves the problems with pchar, but only reports the

bottleneck link accurately
• all data beyond the bottleneck hop will not be accurate

– only takes about 2 minutes to analyze an 8 hop path

CERN IT Seminar

pipechar

• Like pchar, pipechar uses UDP/ICMP packets of
varying sizes and TTL’s.

• Differences:
– uses the jitter (caused by router queuing)

measurement to estimate the bandwidth utilization
– uses a synchronization mechanism to isolate

“noise” and eliminate the need to find minimum
response times

• requires fewer tests than pchar/pathchar

– performs multiple linear regressions on the results

http://www-didc.lbl.gov/pipechar/

10
10

CERN IT Seminar

Sample pipechar output
>pipechar pdrd10.cern.ch
From localhost: 156.522 Mbps (157.6028 Mbps)
1: ir100gw-r2.lbl.gov (131.243.2.1)
| 157.295 Mbps <4.9587% BW used>
2: lbl2-gig-e.es.net (198.129.224.2)
| 159.364 Mbps <21.5560% BW used>
3: chicago1-atms.es.net (134.55.24.17)
| 45.715 Mbps <1.6378% BW used>
4: (206.220.243.32)
| 46.895 Mbps <1.6378% BW used>
5: cernh9-s5-0.cern.ch (192.65.184.142)
| 46.330 Mbps <5.9290% BW used>
6: cgate2.cern.ch (192.65.185.1)
| 45.348 Mbps <10.6760% BW used>
7: cgate1-dmz.cern.ch (192.65.184.65)
| 46.041 Mbps <10.1195% BW used>
8: b513-b-rca86-1-gb0.cern.ch (128.141.211.1)
| 45.411 Mbps !!! <23.0134% BW used>
9: b513-c-rca86-1-bb1.cern.ch (194.12.131.6)
| 46.911 Mbps <9.3956% BW used>
10: r31-s-rca20-1-gb7.cern.ch (194.12.129.98)
| 9.954 Mbps *** static bottle-neck 10BT
11: pcrd10.cern.ch (137.138.29.237)

CERN IT Seminar

Other Tools

• iperf : tool for measuring end-to-end TCP/UDP performance
– http://dast.nlanr.net/Projects/Iperf/

• traceroute: lists all routers from current host to remote host
– ftp://ftp.ee.lbl.gov/

• tcpdump: dump all TCP header information for a specified
source/destination
– ftp://ftp.ee.lbl.gov/

http://dast.nlanr.net/Projects/Iperf/
ftp://ftp.ee.lbl.gov/
ftp://ftp.ee.lbl.gov/

11
11

CERN IT Seminar

tcptrace

• tcptrace: format tcpdump output for analysis using xplot
– http://jarok.cs.ohiou.edu/software/tcptrace/
– NLANR TCP Testrig : Nice wrapper for tcpdump and

tcptrace tools
• http://www.ncne.nlanr.net/TCP/testrig/

• Sample use:
 tcpdump -s 100 -w /tmp/tcpdump.out host hostname
 tcptrace -Sl /tmp/tcpdump.out
 xplot /tmp/a2b_tsg.xpl

CERN IT Seminar

tcptrace and xplot

• X axis is time
• Y axis is sequence number

– Data packets are indicated with double arrows

– Window and Acknowledgement numbers as staircases
• Huge range of important scales

http://jarok.cs.ohiou.edu/software/tcptrace/
http://www.ncne.nlanr.net/TCP/testrig/

12
12

CERN IT Seminar

CERN IT Seminar

Other Tools

• NLANR Tools Repository:
– Lots more network analysis tools
– http://www.ncne.nlanr.net/tools/

http://www.ncne.nlanr.net/tools/

13
13

CERN IT Seminar

Advantage of Parallel Transfers

graph from Davide Salomoni , SLAC

CERN IT Seminar

TCP WAN Performance: Host
Issues

Network Performance

0

50
100
150

200
250

300
350
400

Solaris / Linux 100BT
Solaris 1000BT
Linux 1000B

T

Solaris 100B
T

Solaris 1000B
T

Solaris 100B
T

Linux 100B
T

Solaris 1000BT
Linux 1000B

T
Intel Linux Syskonnect
Alpha Linux Syskonnect

receive host

th
ro

u
g

h
p

u
t

(M
b

its
/s

ec
)

1 stream
2 streams
4 streams
6 streams

 LAN WAN (65 ms RTT)
64KB buffers 64 KB buffers 4 MB Buffers

14
14

CERN IT Seminar

Things to Notice in Previous
Slide

• Parallel Streams help a lot with un-tuned TCP buffers
– and help a little with large buffers on Solaris

• Problems sending from a 1000BT host to a 100BT
Linux host

• Problems sending multiple streams to a 1000BT Linux
system, especially with cheap 1000BT hardware

CERN IT Seminar

Other TCP Issues

• Things to be aware of:
– TCP slow-start

• On the LBL to ANL link, it takes 12 RTT’s to ramp up to full
window size, so need to send about 10 MB of data before
the TCP congestion window will fully open up.

– router buffer issues
– host issues

15
15

CERN IT Seminar

TCP Slow Start

CERN IT Seminar

Problems with TCP over NGI-like
Networks

16
16

CERN IT Seminar

TCP Throughput on DARPA
SuperNet

CERN IT Seminar

Application Performance Issues

17
17

CERN IT Seminar

Other Techniques to Achieve
High Throughput over a WAN

• Use multiple TCP sockets for the data stream
– but only if your receive host is fast enough

• Use a separate thread for each socket
• Keep the data pipeline full

– use asynchronous I/O
• overlap I/O and computation

– read and write large amounts of data (> 1MB) at a time
whenever possible

– pre-fetch data whenever possible
• Avoid unnecessary data copies

– manipulate pointers to data blocks instead

CERN IT Seminar

Use Asynchronous I/O

• I/O followed by
processing

• overlapped I/O and
processing

almost a 2:1 speedup

18
18

CERN IT Seminar

Throughput vs. Latency

• Most of the techniques we have discussed are
designed to improve throughput

• Some of these might even increase latency
– with large TCP buffers, OS will buffer more data

before sending it out.
• Goal of a Grid application programmer

– hide latency
• However, there are some ways to help latency:

– use separate control and data sockets
– use TCP_NODELAY option on control socket

• But: combine control messages together into 1 larger
message whenever possible on TCP_NODELAY sockets

CERN IT Seminar

Application Analysis Using The
NetLogger Toolkit

19
19

CERN IT Seminar

NetLogger Toolkit

• We have developed the NetLogger Toolkit (short for
Networked Application Logger), which includes:

– tools to make it easy for distributed applications to log
interesting events at every critical point

– tools for host and network monitoring

• The approach is novel in that it combines network, host,
and application-level monitoring to provide a complete
view of the entire system.

• This has proven invaluable for:

– isolating and correcting performance bottlenecks

– debugging distributed applications

CERN IT Seminar

NetLogger Components

• NetLogger Toolkit contains the following components:
– NetLogger message format
– NetLogger client library (C, C++, Java, Perl, Python)
– NetLogger visualization tools
– NetLogger host/network monitoring tools

• Source code and binaries are available at:
– http://www-didc.lbl.gov/NetLogger/

• Additional critical component for distributed applications:
– NTP (Network Time Protocol) or GPS host clock is

required to synchronize the clocks of all systems

http://www-didc.lbl.gov/NetLogger/

20
20

CERN IT Seminar

Key Concepts

• NetLogger visualization tools are based on time
correlated and/or object correlated events.

• NetLogger client libraries include:
– precision timestamps (default = microsecond)
– ability for applications to specify an “object ID” for related

events, which allows the NetLogger visualization tools to
generate an object “lifeline”

CERN IT Seminar

NetLogger API

• NetLogger Toolkit includes application libraries for
generating NetLogger messages
– Can send log messages to:

• file
• host/port (netlogd)
• syslogd
• memory, then one of the above

• C, C++, Java, Fortran, Perl, and Python APIs are
currently supported

21
21

CERN IT Seminar

Sample NetLogger Use

 lp = NetLoggerOpen(method, progname, NULL,
hostname, NL_PORT);

while (!done)
{

 NetLoggerWrite(lp, "EVENT_START",
"TEST.SIZE=%d", size);

 /* perform the task to be monitored */
 done = do_something(data, size);

 NetLoggerWrite(lp, "EVENT_END");
}
NetLoggerClose(lp);

CERN IT Seminar

NetLogger Host/Network Tools

• Wrapped UNIX network and OS monitoring tools to log
“interesting” events using the same log format
– netstat (TCP retransmissions, etc.)
– vmstat (system load, available memory, etc.)
– iostat (disk activity)
– ping

• These tools have been wrapped with Perl programs which:
– parse the output of the system utility
– build NetLogger messages containing the results

22
22

CERN IT Seminar

NetLogger Visualization Tool: nlv

Menu bar

Scale for load-line/
pointsEvents

Legend

Zoom window
controls

Zoom box

Playback controls

Window size
Max window size

Zoom-box actions

Playback speed

Summary
line

Time axis

You are
here

Title

CERN IT Seminar

NetLogger Case Studies

23
23

CERN IT Seminar

Example: NetLogger of ncftp
client

• ncftp client on a
10BT ethernet host

• ncftp client on a
1000BT ethernet host

CERN IT Seminar

Example: Combined Host and
Application Monitoring

 VMSTAT_FREE_MEMORY

 VMSTAT_SYS_TIME

 VMSTAT_USER_TIME

MPLAY_START_READ_FRAME

MPLAY_END_READ_FRAME

MPLAY_START_PUT_IMAGE

MPLAY_END_PUT_IMAGE

TCPD_RETRANSMITS

310 311 312 313 314 315 316 317 318

dpss5.lbl.gov
dpss4.lbl.gov

dpss2.lbl.govmems.cairn.net
dpss3.lbl.gov

X

X

X

X

Time (seconds)

24
24

CERN IT Seminar

rfio get: Linux client and server

time (seconds)

Notice:
2ms

pause
between
network
sends

CERN IT Seminar

rfio get:
Linux client and Solaris server

time (seconds)

Notice:
only .2ms

pause
between
network
sends

25
25

CERN IT Seminar

rfio put: Linux client and server

time (seconds)

Notice:
server

network
receive
and disk
write are

NOT
overlapped

CERN IT Seminar

rfio put:
Linux client and Solaris server

time (seconds)

Notice:
server

network
receive
and disk
write are

overlapped

26
26

CERN IT Seminar

 Getting NetLogger

• Source code and binaries are available at:
– http://www-didc.lbl.gov/NetLogger

• Client libraries run on all Unix platforms

• Solaris, Linux, and Irix versions of nlv are currently
supported

CERN IT Seminar

Conclusions

• Tuning Grid Applications is hard!
– usually not obvious what the bottlenecks are

• Tuning TCP is hard!
– no single solution fits all situations

• need to be careful TCP buffer are not too big or too small

• sometimes parallel streams help throughput, sometimes
they hurt

http://www-didc.lbl.gov/NetLogger

27
27

CERN IT Seminar

Conclusions

So what to do?
• design your grid application to be as flexible as possible

– make it easy for clients/users to set the TCP buffer
sizes

– make it possible to turn on/off parallel socket transfers
• probably off by default

• design your application for the future
– even if your current WAN connection is only 45 Mbps

(or less), some day it will be much higher, and these
issues will become even more important

CERN IT Seminar

For More Information

Email:bltierney@lbl.gov

http://www-didc.lbl.gov/NetLogger/
– download NetLogger components
– tutorial
– user guide

http://www-didc.lbl.gov/tcp-wan.html
– links to all network tools mentioned here
– sample TCP buffer tuning code, etc.,

mailto:bltierney@lbl.gov
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/tcp-wan.html

