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Outline

• Architectures for Data Intensive Computing

• The LBNL Distributed Parallel Storage System

• China Clipper Experiment

• Performance Analysis Tools: NetLogger

• Current Work: The “Data Grid”
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Why is Remote Storage Important?

• Why is distributed storage important for Data
Intensive Computing?

— Researchers often are not at the same location
as the data source

— Compute cycles are often not at the same
location as the data source or the data archive
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Remote Access to a Large Data
Archive using a Data Cache

Visualization

Processing

WAN User Site A

Data

Data

High Speed
Cache

Processing

Visualization

User Site B

Visualization
Processing

Archival  Storage

Computer
Center Site

D
at

a 
S

ou
rc

e

Data

Data

Data

Data
HIgh Speed

Cache
Data



Data Intensive Distributed Computing

Data Architecture
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Key features of the architecture

• Allows for high-speed access to very large scientific data
sets using an http-like model
— don’t download entire web site, only the parts

required immediately
— don’t copy entire data set, only the parts of the data

as it is needed
• very high-speed data cache that is distributed, scaleable,

and dynamically configurable
• high-speed tertiary storage interface
• data cataloguing system
• access control system
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The Distributed Parallel Storage
Server (DPSS)

• Our implementation of this data cache is called the
DPSS
— provides high-speed parallel access to remote

data
— Similar to a striped RAID system, but tuned for

WAN access
• data is striped across both disks and servers

— On a high-speed network, can actually access
remote data faster that from a local disk
• 57 MB/sec vs 10 MB/sec
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DPSS Design

• support data-intensive applications
• provide very high data throughput
• parallelism at every level, including disk, SCSI bus,

network, and server
• high-speed WAN aware
• scaleable throughput and capacity
• economical

— use only low-cost commodity hardware components
• location transparency

— location of DPSS servers is transparent to the
application
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DPSS Architecture
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DPSS Server Architecture
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 Typical DPSS implementation

• 4 - 5 UNIX workstations (e.g. Sun Ultra I0s, Pentium 400)
— 4 - 6 Ultra-SCSI disks on 2 SCSI host adapters
— a high-speed network interface (100BT, 1000BT, ATM)

• This configuration can deliver an aggregated data stream to
an application at about 500 Mbits/s (62 MBy/s) using these
relatively low-cost, “off the shelf” components by exploiting
the parallelism of:
— five hosts,
— twenty disks,
— ten SCSI host adapters
— five network interfaces



Data Intensive Distributed Computing

Sample DPSS Costs

• server host = Sun Ultra 10S or Pentium/Linux:    $3-5K
— throughput = 11 - 14 MB/sec

• disk = 16 GB Ultra-wide SCSI (Seagate): $900
— might be able to use IDE drives with new PCI card that puts

multiple IDE “master” devices on the same PCI card (16 GB IDE
disk only $275); waiting for Linux driver

• Cost is mainly dominated by disk price

Throughput Capacity Configuration Cost

10 MB/sec 33 GB 1 server, 2 disks $6.3K

50 MB/sec 165 GB 5 servers, 10 disks $31.5K

50 MB/sec 1 TB 5 servers, 64 disks $80K

100 MB/sec 1 TB 10 servers, 64 disks $102 K
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DPSS client API

• Modeled on Unix I/O
• C library with the following routines:

— dpssOpen(“x-dpss://hostname/setname”,mode)
— dpssAlloc()
— dpssRead()
— dpssWrite()
— dpssLseek()
— dpssClose()

• Read/Write calls have a thread per DPSS server
— client scales with number of servers
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Importance of TCP Buffer Tuning

• 45 Mbps WAN (latency = 41 ms), some congestion

• OC12 (622 Mbps) WAN (latency = 45 ms), no congestion

• Congested Internet Path (latency = 80 ms)

8 KB data packets, 24 KB TCP buffers 6.5 Mbps
64 KB data packets, 350 KB TCP buffers 15.6 Mbps

2 sockets/threads, 64 KB data, 350 KB TCP buffers 18 Mbps

8 KB data packets, 24 KB TCP buffers 7 Mbps
64 KB data packets, 4 MB TCP buffers 350 Mbps

2 sockets/threads, 64 KB data, 4 MB TCP buffers 380 Mbps

8 KB data packets, 24 KB TCP buffers .8 Mbps
64 KB data packets, 350 KB TCP buffers .8 Mbps

2 sockets/threads, 64 KB data, 350 KB TCP buffers 1.6 Mbps
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Importance of TCP Tuning

Buffer
Tuning

Network throughput

Tuned for
LAN (64 K)

LAN
WAN

264 Mb/s (33 MB/s)
44 Mb/s (5.5 MB/s)

Tuned for
WAN (512 K)

LAN
WAN

152 Mb/s (19 MB/s)
112 Mb/s (14 MB/s)

Auto-tuning LAN
WAN

264 Mb/s (33 MB/s)
112 Mb/s (14 MB/s)

LAN = OC-12 (rtt = 1ms)

WAN = OC-3 (rtt = 44 ms)

OS: Solaris 2.6
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Clipper Project

• Goals
— Develop technologies required for distributed

data-intensive applications
— Apply to high energy physics (HEP) data analysis

• Participants
— Argonne National Laboratory
— Lawrence Berkeley National Laboratory
— Stanford Linear Accelerator Center (SLAC)



Data Intensive Distributed Computing

Clipper Technologies

• Distributed Parallel File System
— High-speed, low-cost data cache

• Globus
— End-to-end resource management

• ESnet and NTON
— OC12 networks

• HPSS and Objectivity
— Data archives
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LBNL / SLAC HENP Application
Experiment

 Achieved 57 MBytes/sec  (450 Mbits/sec) of user data
delivered to the application
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LBNL/SLAC Performance Results

• Experiments conducted over NTON, July, 1998
— Application network was IP over OC-12 (622

Mbit/sec) ATM.
• An application (STAF: Physics Analysis package)

running on a Sun Enterprise-4000 SMP at SLAC
(Palo Alto) read data from four distributed disk
servers at LBNL (Berkeley), parsed the XDR records
and placed the data into the application memory
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LBNL/SLAC Performance Results

• Each DPSS server transfer rate is 14.25 MBytes/sec
• OC-12 receiver was able read data from 4 servers in

parallel at 57 Mbytes/sec
— this is the rate of data delivered from datasets in

a distributed cache to the remote application
memory, ready for analysis algorithms to
commence operation.

• This is equivalent to 4.5 TeraBytes/day!
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NetLogger: Distributed System
Performance Analysis Tools
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Overview

• The Problem
— When building distributed systems, we often

observe unexpectedly low performance
• the reasons for which are usually not obvious

— The bottlenecks can be in any of the following
components:
• the applications
• the operating systems
• the disks or network adapters on either the sending or

receiving host
• the network switches and routers, and so on

• The Solution:
• Highly instrumented systems with precision timing

information and analysis tools
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Bottleneck Analysis

• Distributed system users and developers often
assume the problem is network congestion
— This is often not true

• In our experience tuning distributed applications,
performance problems are due to:
— network problems: 40%
— host problems: 20%
— application design problems/bugs: 40%

• 50% client , 50% server

• Therefore it is equally important to instrument the
applications
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NetLogger Toolkit

• We have developed the NetLogger Toolkit

— A set of tools which make it easy for distributed
applications to log interesting events at every
critical point

— NetLogger also includes tools for host and
network monitoring

• The approach is novel in that it combines network,
host, and application-level monitoring to provide a
complete view of the entire system
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Why “NetLogger”?

• The name “NetLogger” is somewhat misleading
— Should really be called: “Distributed Application,

Host, and Network Logger”

• “NetLogger” was a catchy name that stuck
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NetLogger Components

• NetLogger Toolkit contains the following components:
— NetLogger message format
— NetLogger client library
— NetLogger visualization tools
— NetLogger host/network monitoring tools

• Additional critical component for distributed applications:
— NTP (Network Time Protocol) or GPS clock is

required to synchronize the clocks of all systems
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NetLogger Message Format

• We are using the IETF draft standard Universal Logger
Message (ULM) format

• Sample NetLogger ULM event:
DATE=19980430133038.055784 HOST=foo.lbl.gov
PROG=testprog LVL=Usage NL.EVNT=SEND_DATA
SEND.SZ=49332

— This says program named testprog on host foo.lbl.gov
performed event named SEND_DATA, size = 49332
bytes, at the date/time given

• User-defined data elements (any number) are used to store
information about the logged event - for example:

• NL.EVNT=SEND_DATA SEND.SZ=49332
— the number of bytes of data sent
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NetLogger API

• NetLogger Toolkit includes application libraries for
generating NetLogger messages
—  Can send log messages to:

• file
• host/port (netlogd)
• syslogd
• memory, then one of the above

• C, C++, Fortran, Java, Perl, and Python APIs are
currently supported
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Sample NetLogger Use

 lp = NetLoggerOpen(method, progname, NULL, 
hostname, NL_PORT);

while (!done)
{

 NetLoggerWrite(lp, "EVENT_START", 
"TEST.SIZE=%d", size);

 /* perform the task to be monitored */
 done = do_something(data, size);

 NetLoggerWrite(lp, "EVENT_END");
}
NetLoggerClose(lp);
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NetLogger Host/Network Tools

• Wrapped UNIX network and OS monitoring tools to log
“interesting” events using the same log format
— netstat (TCP retransmissions, etc.)
— vmstat (system load, paging, etc.)
— iostat (disk activity)
— ping (network latency)
— snmp_get (switch/router stats)

• These tools have been wrapped with Perl or Java
programs which:
— parse the output of the system utility
— build NetLogger messages containing the results
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NetLogger Event “Life Lines”
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NetLogger Visualization Tools

• Exploratory, interactive analysis of the log data has proven
to be the most important means of identifying problems

— this is provided by nlv (NetLogger Visualization)

• nlv functionality:
— can display several types of NetLogger events at once
— user configurable: which events to plot, and the type of

plot to draw (lifeline, load-line, or point)
— play, pause, rewind, slow motion, zoom in/out, and so

on
— nlv can be run post-mortem or in real-time

• real-time mode done by reading the output of netlogd as it is
being written
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NLV with lifeline, load-line, and
point events



Data Intensive Distributed Computing

NLV Example: System Performance
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NetLogger Radiance Results: Before
Tuning
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NetLogger Radiance Results: After
Tuning
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Example 2:  Parallel Data Block
Server

• NetLogger was used for performance tuning and
debugging of the DPSS and the WAN
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DPSS Instrumentation
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NetLogger Results for the DPSS
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NetLogger Results for the DPSS
over a WAN
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NLV of DPSS with a HENP client
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Data Grids
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Computational/Data Grids

• Grid / Computational Grid:
— The integration of various approaches used for

integrating dispersed resources
— analogy with the grid that supplies ubiquitous

access to electric power.
— Basic grid services are those that locate, allocate,

coordinate, utilize these resources
• Data Grid:

— services for handling remote access to large data
sets in a grid environment

• Working with Globus group at ANL to build “Data
Grid” services
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Grid Services

• Grid services include:
— authentication
— resource location
— resource allocation
— configuration
— communication
— remote file access
— fault detection
— executable management
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Layered Architecture (Globus)
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Data Grids

• We use the term “Data Grid” to describe additional
services that are unique to data intensive grid
applications. These services include:
— data migration tools that are optimized for

transferring large data sets over WANs
— data set discovery and replication tools
— data caches / cache management services
— metadata service:

• global name space for data archived at multiple sites

• file access control

• file collections (data set = many files)

• replica management
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Data Grid Architecture
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Storage Client API

• Storage client API
— simplifies the implementation of Grid applications by

providing a uniform interface to several types of
storage systems

— The interface is defined so that implementations can
exploit techniques to achieve high performance, I.e.:
• network striping

• parallel I/O
• network protocol tuning

• Other Components

— metadata catalog: stores metadata about each file

— replica catalog: maps a logical file name to one or
more file instance names
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Data Grid Applications

• DOE NGI Applications that will be early users of the
Data Grid services
— Earth Grid Project
— Particle Physics Data Grid (PPDG) Project

•  (Cal Tech, SLAC, LBNL, and many others)

• See: http://www-didc.lbl.gov/NGI
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Another New Project:
Grid Monitoring Service

• Our goal is to deploy NetLogger-like host and network
monitoring as a standard “grid service”

• Before this can happen, we need to define:
— archive system

• standard interface to archive system (probably LDAP?)

— network monitoring system
• Surveyor, NWS, pingER, OCXmon, GloPerf,…

• SNMP-based?

• Grid Forum “end to end monitoring” working group
— http://www.gridforum.org/

• DOE NGI monitoring / instrumentation working group
— goal is to deploy something by the end of the year



Data Intensive Distributed Computing

Summary: How to Achieve High
Throughput over a WAN

• Over the past several years we have learned that the following is
needed to obtain good TCP throughput over WAN’s:

— Use multiple TCP sockets for the data stream

•  possibly as many as 1 per disk

— Use a separate thread for each socket

— Use large block sizes (at least 64 KB)

— Read and write at least 100 blocks at a time, if possible

— Use the optimal TCP send and receive buffer sizes

• too large or too small adversely affects performance

— Avoid unnecessary data copies

• manipulate pointers to data blocks instead



Data Intensive Distributed Computing

 For more information

• http://www-didc.lbl.gov/DPSS
• http://www-didc.lbl.gov/NetLogger
• http://www-didc.lbl.gov/NGI
• http://www.globus.org/

• email: bltierney@lbl.gov


