
Data Intensive Distributed Computing

High-Performance Data Intensive
Distributed Computing

Brian L. Tierney
(bltierney@lbl.gov)

Future Technologies Group
Lawrence Berkeley National Laboratory

Data Intensive Distributed Computing

Outline

• Architectures for Data Intensive Computing

• The LBNL Distributed Parallel Storage System

• China Clipper Experiment

• Performance Analysis Tools: NetLogger

• Current Work: The “Data Grid”

Data Intensive Distributed Computing

Why is Remote Storage Important?

• Why is distributed storage important for Data
Intensive Computing?

— Researchers often are not at the same location
as the data source

— Compute cycles are often not at the same
location as the data source or the data archive

Data Intensive Distributed Computing

Remote Access to a Large Data
Archive

Visualization

Processing

Partial
Replica of
Archive

Visualization

Archival Storage

Processing

WAN

User Site

Computer
Center Site

D
at

a
S

ou
rc

e

Partial
Replica of
Archive

Data Intensive Distributed Computing

Remote Access to a Large Data
Archive using a Data Cache

Visualization

Processing

WAN User Site A

Data

Data

High Speed
Cache

Processing

Visualization

User Site B

Visualization
Processing

Archival Storage

Computer
Center Site

D
at

a
S

ou
rc

e

Data

Data

Data

Data
HIgh Speed

Cache
Data

Data Intensive Distributed Computing

Data Architecture

Parallel
computation /
data analysis

real-time data
cache partition

processing
scratch
partition

application
data cache

partition

Architecture for Data Intensive Distributed Computing

large, high-speed network cache (e.g.: DPSS)

data cataloguing, archiving, and
access control system

Data
Source

(instrument or
simulation)

visualization
applications

tertiaray storage
system (e.g.: HPSS)

Disk Storage Tape Storage

Data Intensive Distributed Computing

Key features of the architecture

• Allows for high-speed access to very large scientific data
sets using an http-like model
— don’t download entire web site, only the parts

required immediately
— don’t copy entire data set, only the parts of the data

as it is needed
• very high-speed data cache that is distributed, scaleable,

and dynamically configurable
• high-speed tertiary storage interface
• data cataloguing system
• access control system

Data Intensive Distributed Computing

The Distributed Parallel Storage
Server (DPSS)

• Our implementation of this data cache is called the
DPSS
— provides high-speed parallel access to remote

data
— Similar to a striped RAID system, but tuned for

WAN access
• data is striped across both disks and servers

— On a high-speed network, can actually access
remote data faster that from a local disk
• 57 MB/sec vs 10 MB/sec

Data Intensive Distributed Computing

DPSS Design

• support data-intensive applications
• provide very high data throughput
• parallelism at every level, including disk, SCSI bus,

network, and server
• high-speed WAN aware
• scaleable throughput and capacity
• economical

— use only low-cost commodity hardware components
• location transparency

— location of DPSS servers is transparent to the
application

Data Intensive Distributed Computing

DPSS Architecture

Client Application

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

DPSS Master

data blocks

data blocks

data blocks
Logical Block

Requests

� logical to physical
block lookup

� access control
� load balancing

Physical Block
Requests

Data Intensive Distributed Computing

DPSS Server Architecture

Client
Application

Shared Memory Cache

Block
Request
Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

DPSS Master

from other DPSS
servers

*

DPSS Data Server

to other

DPSS se
rve

rs

Block
Writer
Thread

to other
 clients

Disk Disk DiskDisk

Data Intensive Distributed Computing

 Typical DPSS implementation

• 4 - 5 UNIX workstations (e.g. Sun Ultra I0s, Pentium 400)
— 4 - 6 Ultra-SCSI disks on 2 SCSI host adapters
— a high-speed network interface (100BT, 1000BT, ATM)

• This configuration can deliver an aggregated data stream to
an application at about 500 Mbits/s (62 MBy/s) using these
relatively low-cost, “off the shelf” components by exploiting
the parallelism of:
— five hosts,
— twenty disks,
— ten SCSI host adapters
— five network interfaces

Data Intensive Distributed Computing

Sample DPSS Costs

• server host = Sun Ultra 10S or Pentium/Linux: $3-5K
— throughput = 11 - 14 MB/sec

• disk = 16 GB Ultra-wide SCSI (Seagate): $900
— might be able to use IDE drives with new PCI card that puts

multiple IDE “master” devices on the same PCI card (16 GB IDE
disk only $275); waiting for Linux driver

• Cost is mainly dominated by disk price

Throughput Capacity Configuration Cost

10 MB/sec 33 GB 1 server, 2 disks $6.3K

50 MB/sec 165 GB 5 servers, 10 disks $31.5K

50 MB/sec 1 TB 5 servers, 64 disks $80K

100 MB/sec 1 TB 10 servers, 64 disks $102 K

Data Intensive Distributed Computing

DPSS client API

• Modeled on Unix I/O
• C library with the following routines:

— dpssOpen(“x-dpss://hostname/setname”,mode)
— dpssAlloc()
— dpssRead()
— dpssWrite()
— dpssLseek()
— dpssClose()

• Read/Write calls have a thread per DPSS server
— client scales with number of servers

Data Intensive Distributed Computing

dpssRead()

Disk Storage

DPSS
Server

Disk Storage

DPSS
Server

Disk Storage

DPSS
Server

Disk Storage

DPSS
Server

read
thread

read
thread

read
thread

read
thread

read buffer
(64 KB
blocks)

dpssRead(dpss_file_descriptor, char *buffer, int size) ;
ie: dpssRead(dpssfd, buffer, 4*1024*1024);

use block header to
determine where to
insert block into
buffer; no memory
copy required

Data Intensive Distributed Computing

Importance of TCP Buffer Tuning

• 45 Mbps WAN (latency = 41 ms), some congestion

• OC12 (622 Mbps) WAN (latency = 45 ms), no congestion

• Congested Internet Path (latency = 80 ms)

8 KB data packets, 24 KB TCP buffers 6.5 Mbps
64 KB data packets, 350 KB TCP buffers 15.6 Mbps

2 sockets/threads, 64 KB data, 350 KB TCP buffers 18 Mbps

8 KB data packets, 24 KB TCP buffers 7 Mbps
64 KB data packets, 4 MB TCP buffers 350 Mbps

2 sockets/threads, 64 KB data, 4 MB TCP buffers 380 Mbps

8 KB data packets, 24 KB TCP buffers .8 Mbps
64 KB data packets, 350 KB TCP buffers .8 Mbps

2 sockets/threads, 64 KB data, 350 KB TCP buffers 1.6 Mbps

Data Intensive Distributed Computing

Importance of TCP Tuning

Buffer
Tuning

Network throughput

Tuned for
LAN (64 K)

LAN
WAN

264 Mb/s (33 MB/s)
44 Mb/s (5.5 MB/s)

Tuned for
WAN (512 K)

LAN
WAN

152 Mb/s (19 MB/s)
112 Mb/s (14 MB/s)

Auto-tuning LAN
WAN

264 Mb/s (33 MB/s)
112 Mb/s (14 MB/s)

LAN = OC-12 (rtt = 1ms)

WAN = OC-3 (rtt = 44 ms)

OS: Solaris 2.6

Data Intensive Distributed Computing

Clipper Project

• Goals
— Develop technologies required for distributed

data-intensive applications
— Apply to high energy physics (HEP) data analysis

• Participants
— Argonne National Laboratory
— Lawrence Berkeley National Laboratory
— Stanford Linear Accelerator Center (SLAC)

Data Intensive Distributed Computing

Clipper Technologies

• Distributed Parallel File System
— High-speed, low-cost data cache

• Globus
— End-to-end resource management

• ESnet and NTON
— OC12 networks

• HPSS and Objectivity
— Data archives

Data Intensive Distributed Computing

LBNL / SLAC HENP Application
Experiment

 Achieved 57 MBytes/sec (450 Mbits/sec) of user data
delivered to the application

Data Intensive Distributed Computing

LBNL/SLAC Performance Results

• Experiments conducted over NTON, July, 1998
— Application network was IP over OC-12 (622

Mbit/sec) ATM.
• An application (STAF: Physics Analysis package)

running on a Sun Enterprise-4000 SMP at SLAC
(Palo Alto) read data from four distributed disk
servers at LBNL (Berkeley), parsed the XDR records
and placed the data into the application memory

Data Intensive Distributed Computing

LBNL/SLAC Performance Results

• Each DPSS server transfer rate is 14.25 MBytes/sec
• OC-12 receiver was able read data from 4 servers in

parallel at 57 Mbytes/sec
— this is the rate of data delivered from datasets in

a distributed cache to the remote application
memory, ready for analysis algorithms to
commence operation.

• This is equivalent to 4.5 TeraBytes/day!

Data Intensive Distributed Computing

NetLogger: Distributed System
Performance Analysis Tools

Data Intensive Distributed Computing

Overview

• The Problem
— When building distributed systems, we often

observe unexpectedly low performance
• the reasons for which are usually not obvious

— The bottlenecks can be in any of the following
components:
• the applications
• the operating systems
• the disks or network adapters on either the sending or

receiving host
• the network switches and routers, and so on

• The Solution:
• Highly instrumented systems with precision timing

information and analysis tools

Data Intensive Distributed Computing

Bottleneck Analysis

• Distributed system users and developers often
assume the problem is network congestion
— This is often not true

• In our experience tuning distributed applications,
performance problems are due to:
— network problems: 40%
— host problems: 20%
— application design problems/bugs: 40%

• 50% client , 50% server

• Therefore it is equally important to instrument the
applications

Data Intensive Distributed Computing

NetLogger Toolkit

• We have developed the NetLogger Toolkit

— A set of tools which make it easy for distributed
applications to log interesting events at every
critical point

— NetLogger also includes tools for host and
network monitoring

• The approach is novel in that it combines network,
host, and application-level monitoring to provide a
complete view of the entire system

Data Intensive Distributed Computing

Why “NetLogger”?

• The name “NetLogger” is somewhat misleading
— Should really be called: “Distributed Application,

Host, and Network Logger”

• “NetLogger” was a catchy name that stuck

Data Intensive Distributed Computing

NetLogger Components

• NetLogger Toolkit contains the following components:
— NetLogger message format
— NetLogger client library
— NetLogger visualization tools
— NetLogger host/network monitoring tools

• Additional critical component for distributed applications:
— NTP (Network Time Protocol) or GPS clock is

required to synchronize the clocks of all systems

Data Intensive Distributed Computing

NetLogger Message Format

• We are using the IETF draft standard Universal Logger
Message (ULM) format

• Sample NetLogger ULM event:
DATE=19980430133038.055784 HOST=foo.lbl.gov
PROG=testprog LVL=Usage NL.EVNT=SEND_DATA
SEND.SZ=49332

— This says program named testprog on host foo.lbl.gov
performed event named SEND_DATA, size = 49332
bytes, at the date/time given

• User-defined data elements (any number) are used to store
information about the logged event - for example:

• NL.EVNT=SEND_DATA SEND.SZ=49332
— the number of bytes of data sent

Data Intensive Distributed Computing

NetLogger API

• NetLogger Toolkit includes application libraries for
generating NetLogger messages
— Can send log messages to:

• file
• host/port (netlogd)
• syslogd
• memory, then one of the above

• C, C++, Fortran, Java, Perl, and Python APIs are
currently supported

Data Intensive Distributed Computing

Sample NetLogger Use

 lp = NetLoggerOpen(method, progname, NULL,
hostname, NL_PORT);

while (!done)
{

 NetLoggerWrite(lp, "EVENT_START",
"TEST.SIZE=%d", size);

 /* perform the task to be monitored */
 done = do_something(data, size);

 NetLoggerWrite(lp, "EVENT_END");
}
NetLoggerClose(lp);

Data Intensive Distributed Computing

NetLogger Host/Network Tools

• Wrapped UNIX network and OS monitoring tools to log
“interesting” events using the same log format
— netstat (TCP retransmissions, etc.)
— vmstat (system load, paging, etc.)
— iostat (disk activity)
— ping (network latency)
— snmp_get (switch/router stats)

• These tools have been wrapped with Perl or Java
programs which:
— parse the output of the system utility
— build NetLogger messages containing the results

Data Intensive Distributed Computing

NetLogger Event “Life Lines”

Data Intensive Distributed Computing

NetLogger Visualization Tools

• Exploratory, interactive analysis of the log data has proven
to be the most important means of identifying problems

— this is provided by nlv (NetLogger Visualization)

• nlv functionality:
— can display several types of NetLogger events at once
— user configurable: which events to plot, and the type of

plot to draw (lifeline, load-line, or point)
— play, pause, rewind, slow motion, zoom in/out, and so

on
— nlv can be run post-mortem or in real-time

• real-time mode done by reading the output of netlogd as it is
being written

Data Intensive Distributed Computing

NLV with lifeline, load-line, and
point events

Data Intensive Distributed Computing

NLV Example: System Performance

Data Intensive Distributed Computing

Client

 Master

= monitoring point

*

*

*

Worker:
Projection

Worker: Ray
Tracer

Worker:
Projection

Worker: Ray
Tracer

Worker:
Projection

Worker: Ray
Tracer

*
*
* *

*
*
*
**

Parallel Ray Tracing (Radiance):
Instrumentation Points

Data Intensive Distributed Computing

NetLogger Radiance Results: Before
Tuning

Data Intensive Distributed Computing

NetLogger Radiance Results: After
Tuning

Data Intensive Distributed Computing

Example 2: Parallel Data Block
Server

• NetLogger was used for performance tuning and
debugging of the DPSS and the WAN

Data Intensive Distributed Computing

DPSS Instrumentation

Client
Application

Shared Memory Cache

Block
Request
Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

DPSS Master

from other DPSS
servers

*

= monitoring point

DPSS Data Server

to other

DPSS se
rve

rs

Block
Writer
Thread

to other
 clients

Disk Disk DiskDisk

*

*
*
*

**

*

*

*

**

Data Intensive Distributed Computing

NetLogger Results for the DPSS

Data Intensive Distributed Computing

NetLogger Results for the DPSS
over a WAN

Data Intensive Distributed Computing

NLV of DPSS with a HENP client

Data Intensive Distributed Computing

Data Grids

Data Intensive Distributed Computing

Computational/Data Grids

• Grid / Computational Grid:
— The integration of various approaches used for

integrating dispersed resources
— analogy with the grid that supplies ubiquitous

access to electric power.
— Basic grid services are those that locate, allocate,

coordinate, utilize these resources
• Data Grid:

— services for handling remote access to large data
sets in a grid environment

• Working with Globus group at ANL to build “Data
Grid” services

Data Intensive Distributed Computing

Grid Services

• Grid services include:
— authentication
— resource location
— resource allocation
— configuration
— communication
— remote file access
— fault detection
— executable management

Data Intensive Distributed Computing

Layered Architecture (Globus)

Applications

Core Services
Metacomputing

Directory
Service

GRAM
Globus
Security
Interface

Heartbeat
Monitor

Nexus

Gloperf

Local
Services

LSF

Condor MPI

NQEEasy

TCP

SolarisIrixAIX

UDP

High-level Services and Tools

DUROC globusrunMPI Nimrod/GMPI-IO CC++

GlobusView Testbed Status

GASS

Data Intensive Distributed Computing

Data Grids

• We use the term “Data Grid” to describe additional
services that are unique to data intensive grid
applications. These services include:
— data migration tools that are optimized for

transferring large data sets over WANs
— data set discovery and replication tools
— data caches / cache management services
— metadata service:

• global name space for data archived at multiple sites

• file access control

• file collections (data set = many files)

• replica management

Data Intensive Distributed Computing

Data Grid Architecture

ftp
driver

local
file

driver

HPSS
driver

DPSS
driver

http
driver

Grid Storage Client API Library
(block level acess and file transfer functions)

Global
Directory
Service

(LDAP-based)

Queing
Service

Reliability
Service

(mainly for
HPSS)

File location / replication service

Application

Data Intensive Distributed Computing

Storage Client API

• Storage client API
— simplifies the implementation of Grid applications by

providing a uniform interface to several types of
storage systems

— The interface is defined so that implementations can
exploit techniques to achieve high performance, I.e.:
• network striping

• parallel I/O
• network protocol tuning

• Other Components

— metadata catalog: stores metadata about each file

— replica catalog: maps a logical file name to one or
more file instance names

Data Intensive Distributed Computing

Data Grid Applications

• DOE NGI Applications that will be early users of the
Data Grid services
— Earth Grid Project
— Particle Physics Data Grid (PPDG) Project

• (Cal Tech, SLAC, LBNL, and many others)

• See: http://www-didc.lbl.gov/NGI

Data Intensive Distributed Computing

Another New Project:
Grid Monitoring Service

• Our goal is to deploy NetLogger-like host and network
monitoring as a standard “grid service”

• Before this can happen, we need to define:
— archive system

• standard interface to archive system (probably LDAP?)

— network monitoring system
• Surveyor, NWS, pingER, OCXmon, GloPerf,…

• SNMP-based?

• Grid Forum “end to end monitoring” working group
— http://www.gridforum.org/

• DOE NGI monitoring / instrumentation working group
— goal is to deploy something by the end of the year

Data Intensive Distributed Computing

Summary: How to Achieve High
Throughput over a WAN

• Over the past several years we have learned that the following is
needed to obtain good TCP throughput over WAN’s:

— Use multiple TCP sockets for the data stream

• possibly as many as 1 per disk

— Use a separate thread for each socket

— Use large block sizes (at least 64 KB)

— Read and write at least 100 blocks at a time, if possible

— Use the optimal TCP send and receive buffer sizes

• too large or too small adversely affects performance

— Avoid unnecessary data copies

• manipulate pointers to data blocks instead

Data Intensive Distributed Computing

 For more information

• http://www-didc.lbl.gov/DPSS
• http://www-didc.lbl.gov/NetLogger
• http://www-didc.lbl.gov/NGI
• http://www.globus.org/

• email: bltierney@lbl.gov

