ACE™ - The ADAPTIVE
Communication Environment

Johannes Gutleber
Vienna University of Technology, Austria
CERN, Switzerland

;; Adaptlve CommUnlcatlon‘ :

‘ g,
[b 3 [l P
- ' Ly E E "’h! o " = U
8 W AW BT m/n’;Dﬁm
Ll Y + 3 5 \ T H b A
LS ¥ * " - - L
W "."I..~ . W E Ay - ¢
R ™ L . it . ¢
» i B 5 v W
1 b, L ; 34 o Y s :

, T

S xterm

if (n == -1)
ACE_ERROR (<LM_ERROR.
"Zpant.
"handle_input”)):
else

ACE_DEBUG {<¢LM_DEBUG.
"(ZP1%t) buf of size

n.
n.
bufl):
return 0:
}
int

cons
con:

Dgram_Endpoint ({handle_timeout

"(ZP1%t) activity occurred on handle Zd!\n".
this—>endpoint_.get_handle (})):

ssize_t n = this—>endpoibuF,

sizeof buf.

from_addr) :

MNCIMSZOCRITLCN i A] e
iles Tools Edit Search Mule C++ Help

[1zlass

ram_Endpoint : public ACE_Ewvent_Handler

Dgram_Endpoint (const ACE_INET_Addr &local_addr);

44 = Hook methods inherited from the <(ACE_Ewvent_Handler:.
wirtual ACE_HANDLE get_handle {(woid] const;
wirtual int handle_input (ACE_HANDLE handlel;
wirtual int handle_timeout (const ACE_Time_VWalue & tw,
const wold skarg = 0);
wirtual int handle_close (ACE_HANDLE handle,
ACE_Reactor_Mask close_mask] ;

int send (const char *xbuf, size_t len, const ACE_INET_Addr &3
A4 Bend the <buf>» to the peer.

ppvate:
ACE_SOCK_Dgram
U AOper =

i

endpoint_;
sending/receiving dgrams.

int
Dgram_Endpoint::send (const char sxbuf,

gize_t len,

const ACE_IMET_Addr &addr)
i

}

Dgram_Endpoint::Dgram_Endpoint {const ACE_IMNET_Addr &loczl_=dde)
: endpoint_ {local_addr)
i

}

ACE_HAMDLE
Ogram_Endpoint::get_handle (woid)] const

return this-rendpoint_.send (buf, len, addr);

get_handle ()
(C++)——L74——17%

[] return this-rendpoint_.

Eﬁ_EStartl giugin- |§xterm- |§x‘cer,m

|M Metscape: F!ati,e.'..l L Metscape Mail ... |m emacs@s.. | @b xy 3.10a <unre... |-=l-n #v contrals | 14:10 |

TV Overview ©)

_/

 Object Oriented Terminology
« ACE Wrappers

. Streams > 45 minutes
» Message Demultiplexing)
o Break! 20 minutes
* Service Configuration \
 Tasks and Active Objects 45 minutes

o Testimonies

xy-table, detector test bed
Radioactive source moves over area
At each position take data

Analyse data and store to disk

 Write C Program that contains
— Control of table
— Analysis of data
— Transfer to disk

 Problems that could occur (test beams?)
— CPU power to small for all tasks -> distribute

— Local disk space not big enough -> transfer data
— Include different detectors & readouts -> configure

TV Toolkit/Framework Approach

« Control/analysis tasks are
— Submit required version to scheduler (AO)
— If CPU power insufficient — execute on other CPU

« Communication is encapsulated
— Easier to add/change disk and network access

 Tools alleviate from ISsues
— ... that one tempts to forget anyway ...

TU Toolkit ©)

¢ A of
« The OO equivalent of subroutine libraries.
— General purpose lists, the C++ 10 stream, Mutexes

 The programmer writes the main body of the
application and calls the code he wants to use.

Main loop Class Library

U ?: Class Library

TV Classes and Components

In an object-oriented toolkit

— Represent the

— A class corresponds to a resource

— Functions for are provided

— e.g. IPC (file descriptor - open, close, read, write)
In a toolkit

— Are

IS presented through a
— e.g. IPC streams for UDP, TCP, VME:a >> b

TU Framework ©)

« Asetof classes that make up a
a class of
e |t defines objects
their Class Library

responsibilities and —
Application

the .
i
 The programmer reuses .\ -

the main body and writes loop
the code it calls. Class Library O

TU Toolkit Relation Overview

Applications
Frameworks and
Components have A Framework
standardised interfaces,

although their
implementations may O / Component

be different for different 4
cases. Both consist of ./ Classes

collaborating classes. @ =

FIFO UDP

ACE Is a multi-layer object-oriented
— It and

Implements several

— A pattern describes a solution for a problem that
occurs over and over again in a general way.

Aims at achieving platform independence.
Can be used to

— Implement applications or
— framework extensions.

TU Components of ACE

DISTRIBUTED MIDDLETFARE
SERVICES AND JAWS ADAPTIVE APPLICATIONS
COMPONENTS ;

THE ACE ORB

=] (140)

LOGGING

FRAMEWWOREY

SERVICE
CONFIG-
URATOR

C++
WRAPPERS

DYNAMIC
LINKING |

PROCESS/THREAD COMMUNICATION VIRTUAL MEMORY
SUBSYSTEM SUBSYSTEM SUBSYSTEM

GENERAL POSIX AnND Wiri32 SERVICES

TU OS Adaption Layer &)

o Ct++t shield upper levels from different
operating system APIs (Posix, VxWorks, Win32).

* Provides access to different thread and
synchronization packages.

« Eases access to different IPC mechanisms.
* Provides integration of OS calls into C++ code.

TV Object-Oriented OS AP

Although modern OS provide similar
functionality, the interfaces are different.

SemaphorelD String Number Number
Scheduler policy priority+policy priority
New process CreateProcess fork/exec fork/exec
File Read ReadFile/overlap pread Iseek/read
Thread create AfxBeginThread pthread create taskSpawn

Main argc/argv/env argc/ergv/env spa main args

TU The ACE_OS:: Namespace

* A name space with
for all supported platforms (best effort only).

Input/Output facilities to work with handles

that can be used with any IPC form.

IPC SAP provide common operations and address
classes for pipes, queues, sockets, streams.

Threads, processes, locks and signals.

Functions that may not be supported everywhere
— e.(.. thread suspend/resume ()

TU Adaptive Service eXecutive

A Framework for connecting services in order to
build a new application.

Pipes to connect programs: 1964 Mcllroy
Components with narrow Interface: 1969 Mcllroy
« Streams as pattern: 1976 Dave Parnas

o Support software toolkit: 1994 D. Schmidt

L (¢

TU Ingredients &

« Uniform Interface to all
mechanisms (the IPC SAP):

— open, close, send, recv, send n, recv_n

— Allows easy reconfiguration of communication
software (exchange of transport layer).

« Offers a facility (Threads).
¢ A may be d at run-time.
components.

— (Accept or, Svc_Handl er, Event _Handl er).

TU The Stream Facility &)

» Uses and object to link
together service Modules.
— Inherit from a Thread class and provide service

— compose them with IPC links

¢ A IS an object to and
|t Inter-connected
are objects that the

Into a series of interconnected layers.
They are the stream chain elements.

TU The ASX Stream Class &

« Example: xy-table DAQ station
— receive X,y values from serial line
— calculate dx/dt, dy/dt and format the values
— send them to operator over ethernet
— same thing in other direction for control

TU Design with Streams &)

::sve() {getg(nb); operation(); putq(nb);}

Data Processing | g Display

p“tQ(”b)T Values l T l

SDecode || SEncode EDecode || EEncode
chandl e input() { 4 A
recv(Handl e, nb);
out q() Bytes Structures
} \ 4 v
Multiplexor Multiplexor

1 1

XY - Table dedicated Ethernet OODBMS

TU Important Participants &

 Push, pop (Stream class)

— Add/remove a modules to/from the
e put/ get (Task class)

— Insert/remove message to/from a stream
e SVC

— Service routine of a Service Handler class or a
class. Within this thread of control data can be
received, processed and forwarded.

TV Make it work ©)

Task* Decode, Encode;
Task Task* DataTrans;
Modul e A(* Serial ™,
Decode, Encode);
Modul e B(“ Dt Process”,
Decode Encode Dt Process, Dt Process);
Modul e C(*“ ENet”,
Encode, Decode);

[-]

Module St r eam mai nSt r eam
mai NSt r eam push(A);
mai NSt r eam push(B) ;
mai NSt r eam push(C) ;

[.]

IPC mai nStream wai t () ;

TU Open SDecode &)

cl ass SDecode: public Task<ACE SYNCH> {
publ i c:
virtual int svc();
virtual int open();
virtual int put(...

private:
ACE TTY IO dev;
ACE _DEV Connector con;
¥
I nt SDecode: : open()
{ I/ read fromserial |ine and pass to anal yzer

con. connect (dev, ACE DEV_ADDR (“/dev/sonedevice’),;
ACE TTY I O : Serial _Parans parans;

par ans. baudrate = 9600;

[-]

dev.control (ACE TTY_ | O : STEPARANMS, ¶ns);}

TU SDecode ©)

I nt SDecode: :svc()
{ I/ read fromserial |ine and pass to anal yzer
while (end !'= 1) {
dev.recv_n(& eadBuffer, sizeof(readBuffer));
XYTDat a xyt dat a(& eadBuffer);
nmb = new ACE Message Bl ock(xytdata);
t hi s->put _next (nb);
}
}

| nt SDecode: : put (ACE_Message Bl ock* m
ACE Ti nme_Val ue* tinmeout)
{ Il SDecode never gets anything from other tasks
/|l aparts fromthe nessage to stop
end = 1;
t hi s->rel ease(nb);

TU SEncode ©)

I nt SEncode: :svc()
{ Il read fromin queue and drive x-y table
while (1) {
t hi s- >get g(nb) ;
I f (nmb->nmsg _type() !'= ACE Message Bl ock: : MB_ _HANGUP)
br eak;
dev.send n(...// Send data to x-y table
t hi s->rel ease(nb)
}
this->sibling->put(nb); // pass to other task in nodule
return O;

}

I nt SEncode: : put (ACE _Message Block *m ACE Tine_Val ue *to)
{ Il Called by other threads.

/'l Just enqueue nessage into |ocal queue

t hi s->put q(nb) ;
}

 Have only one class instead of Encode/Decode

— share the device (explicit synchronisation)

— In svc routine, alternatively perform tasks
eif (this->Is reader()) read_device
eif (this->is witer()) wite _device

TV Data Processing &)

I nt Dt Process::svc(){

while (1) {

t hi s- >get q(nb) ;

I f (nmb->nmeg _type() != ACE Message Bl ock: : MB_HANGUP)
br eak;

I f (this->s reader()) {
/[l calc dx/dt, dy/dt, calc strip nunber, hits,
nmb = new ACE Message Bl ock(full Data);

} else {
/|l calc x,y fromchosen strips, duration from energy
/| paraneter, ...
nmb = new ACE Message Bl ock(xyt Dat a) ;
t hi s->put _next (nb);

return O;

}

I nt Dt Process: : put (ACE _Message Block *m ACE Tine_Value *t)
{ this->putqg(nb); }

 Don't perform tasks in svc routine
— Perform operations in put routines directly
— Share the thread of the caller

— Performance improvement if tasks do only little
processing and at high message rates.

¢ \\
put A {
| SVC

Jut l ’
I l {SVC y 1

put '
()] L]
- /
High performance Low performance

good for single process solutions good for multiple processes

TU EventDemultiplexing — ©

* Akey part in distributed systems
— Assigning incoming messages to the processors
(5)
{o
e |s part of other patterns
— Connection accept, Active object.

— Handle concurrent (interleaved) service requests
— dispatch requests to responsible event handlers.
event processing

(the process of dispatching is still synchronous),

— Event based on
(a callback that is also processed synchronously).

TU Example: Data Server ©

o Peers want to access files on one machine

| do analysis

request data ===

i

-Wents

local operator g !

—_—

{0 (0 (R0 L

TV First Approach &)

 One thread per connection.
— Concurrency control will degrade performance.

— With many threads context switching will influence
the quality of the service as well.

— Portability: Semantics of I/O operations differ on
different operating system platforms.

— Different sources difficult to integrate (stdin, socket).

TV Reactor ©)

 One handler type for each

— accept connection, handle input, handle timeout,
handle output, close connection.

for an input with Reactor.

o Dispatcher and
notifies the Reactor object.

 Reactor back the
appropriate event that

processes the input.

TU Interaction Diagram &

Node A . Node B

Client Reactor ConnAccept| [HandleSend

Est abl i sh iConnecti onJ

Regi ster a
I handl er for’”

| ncom ng]

messages.

Confirm O:pnnect lon |[<
< :

SendiData Di spatch ta the handl er

J Read Dat al]

This is a simplified diagram.

TV Implementation Example

cl ass ConnAccept : public Event Handler {.}
cl ass Handl eSend : public Event Handler {.}

ConnAccept : : ConnAccept () {
Reactor::instance()->register_handler (this, ACCEPT_EVENT);

}

ConnAccept :: handl e_event () {
new Handl eSend(Handl e) ;

}

Handl eSend: : Handl eSend(Handl eT H) {
Reactor::instance()->register _handler (this, READ EVENT);
Reactor::instance()->schedule tiner (this, 0, TIMOQUT);

}

mai n() {
Reactor::instance->()run_event loop(); // Singleton

}

TW Implementation Contd. &

| nt Handl eSend: : handl e_i nput (ACE_HANDLE) {
/'l share thread wth Reactor
aHandl e. recv(& ocal Buffer);
I f (|l ocal Buffer contains EndCf Transm ssi on nar ker)
return -1; // inplicitly call handl e close

...do the dat abase access and send back the val ues ...

aHandl e. send(results);
return O;

}

I nt Handl eSend: : handl e_ti neout (ACE Ti ne_Val ue& t) {
return -1;
}

Handl eSend: : handl e_cl ose() {
aHandl e. cl ose(), delete this;

}

TU Service Specification &)

Interface
— handl e_event (Event T Event) procedure,

— Switch/case on event in the procedure.

Interface

— handl e_accept, handl e I nput,
handl e _out put, handl e tineout,

handl e_cl ose procedures.

— Predefined classes (concrete event handlers) for
different events are available in ACE for
Acceptor, Connector, Task (Svc_Handler)

TU Advantages of Reactor

 Separation of concerns

Implementation are
® easier extensibility, reuse services

Decoupling of application from data transfer
— Easier design, modification and extension.

Increased portability.
— UNIX demultiplexing: sel ect, pol |

— WInNT demultiplexing:
Wai tforMul ti pl eCbj ects

Serialisation (lock free service implementation).

TV Disadvantages of Reactor

* Restricted applicability.
— OS must support abstract handles for all events.

» More difficult to debug than a flat design.
* Non-preemptive
— Service execution will block further requests.

— Service routine as threads or Active Objects raises
the same problems as in ‘thread per connection’
therefore...

TU Cut!

TU Proactor @)

* For of
asynchronous operations.
* The of an asynchronous operation
Into a well known location.
¢ A IS registered with a

that notifies the service routine when
the operation completes.

 Only applicable if the operating system supports
asynchronous operations (ai or ead on Solaris).

T

[CDR cIient]—»/
: Parse

1: Get file

Central Data Recording

2

request
and register

aioread N

S
S
<
&
L
s
3
o
S

Completion
Dispatcher

3 7. write completes

&
X
S
S)
S
p

4 file read completes

TU CDR Request Description

o After a connection a CDR handler is created and
socket Is read synchronously.
« CDR handler registers and issues an
for the requested data.

and the completion and
dispatcher notifies the CDR handler.

TV CDR contd. ©)

* The CDR handler sends the file with a socket

command and
registers itself as a completion handler.
o After the has the OS notifies

the completion dispatcher.
 The dispatcher notifies the completion handler.

TU Implementation Example &

cl ass CDRHandl er : public ACE Handl er {
/] called when read of data from di sk conpl et es
virtual void handle read file(
const ACE Asynch _Transmt File::Result& result);
/[l called when a wite to the socket conpl etes
virtual void handle wite streant..);
ACE Handl e (void) const {
return this->outputStreamget _handle(); // handle for ws
}
ACE Asynch Wite Streamws; // for witing to socket
ACE _Asynch_Read File rf; [/ for reading data from di sk

'

CDRHandl er: : CORHandl er () {
ws. open(*this); // uses handle from output Stream
ACE Message Bl ock *nb = new ACE _Message Bl ock(LENGTH);
rf.open(*this, fhandle); // pass self as conpl etion handl er
rf.read(*nb, nb->size());

TU Implementation contd. &

voi d CDRHandl er::handle read file (const
ACE Asynch Read File::Result& result)

{
I f (result.success()) {
this->ws.wite(result.nessage bl ock(),
result.bytes transferred ());
If (file size > size transferred)
...initiate another asynchronous read ...
}
¥

voi d CDRHandl er::handle wite streanm(...) {
I f (result.success()) {
n =result.bytes to wite()-result.bytes transferred();
if (n 1= 0)
...initiate another asynchronous wite ...
el se
ws. cl ose, rf.close(), done = 1;

TU CDR Main ©)

static int done = 0O;

int main (int argc, char* argv[]) {
...accept a connection froma client using reactor
CDRHandl er handl er;
whil e (!done)
ACE Proactor::instance()->handl e events();

return O;

}

* |tis possible to have more than one requests
that work without having the
complexity of multiple threads/processes.

asynchronous operations may lead to
Indeterministic behaviour.

Into the
completion handler complicates programming.

— Imagine the case of several clients

TU Service Configuraton &

« Each beam test environment will have its own,
specific “reconstruction” algorithms
— Microstrip gas chambers
— pixel detectors
— calorimeters (crystal arrays)
 The service modification must be transparent for
clients
— For those who write the interface to the OODBMS
— For those who write the on-line framework

TV Service Configurator Pattern

the of services
the point in time at which
service Implementations are d.

it when services shall be initiated,
suspended, resumed and terminated

dynamically.
— All other use cases fall back to this one.

e Do In case of restrictions or
when the service IS to Its

context.

TV Exchange a Service on the Fly

cl ass TBAnal ysi s cl ass TBAnal aysi s
. ACE_Servi ce_(bj ect . ACE_Servi ce_(bj ect
{ {
handl e_i nput (ACE_Handl e fd) handl e_i nput (ACE_Handl e fd)
{ {
} }
b -
init (int argc, _\/:,/:
char** argv) -
{ //—\\ ‘ #svc.conf file:
/'l get data from #Ter m nat e Handl er

renove TBAnal ysis
#Reconfi gure
dynam ¢ TBAnal ysi s
Service (bject *

~/ ECAL. dl | : anal ysi s
“-Port 5005

/] different crates

Set Por t Nunber ;
}

0l o
0l o

}
TBAnal ysi s anal ysi s;

T Service Repository <)

 The Service Repository centrally s the
configured of the application.
¢ A (svc. conf) is used to

Interface to this Service Repository.

o Services can be
— configured as or
ed and d,
ed and
can be pushed onto, popped from

TV The Service ©)

* |s aclass that to
dynamically configure a service.
—init(int argc, char** argv)
IS the entry point of the service and called
automatically when the service get activated.

—fi1ni (voi d) serves as a hook for implementing
controlled removal of the service.

— suspend/r esune may be implemented.
—info(char**, size t) - implement thisto
provide information about the service.

TV

Service
Repository

Concrete Service @)
* |nherits from Service and a concrete
of the service.
Service
'f.”n'fg — Event_Handler
>— @) suspend()
E}i}lé)m 0 - Shared_Object
A — /
NV
ACE specific part that
provides service
Service B routines,
event handlers.

TU Where to Use ©)

o Services have to be
— Use of pipes, streams, sockets, raw devices, ...

 Implementation of services have to be

— Compare the Java applet/serviet mechanisms
— Compare Mobile Agent facilities

* Dynamic reconfiguration
— for

TU Important ISsues @)

* Indeterminism and reduced Reliability.

— An application that works fine with a specific service
or configuration may exhibit completely different
behaviour with another one.

» Qverhead
— Could be a time problem in mainstream OS'’s.

— VxWorks only knows dynamic linking and is a real-
time system, so...

« Complexity of service management.

TV Concurrency Mechanisms

Managers for Threads and Processes,
Guards, atomic operations,
Conditions,

Synchronization Wrappers for basic locks
— Mutex, Semaphore,
— Barrier.

The Active Object pattern.

TV Managers &)

« Components that contain a set of mechanisms to
manage groups of threads or processes.

— spawn, suspend, resune, wait.
 Process manager spawn operation copies of the
process image and passes options, whereas a
thread manager spawn operation starts a given

method as a thread.

 ACE Process and ACE Thr ead classes
exist for direct use of processes and threads.

« A mutual exclusion lock is a binary semaphore
(Implementing a spin-lock algorithm)

for controlling access to shared

Typical interface:

—acquire,try_acquire,rel ease

Avallable for threads and processes.

TV RW Mutex &)

 Readers/writers lock Is applicable If a resource iIs
rather read than modified.

* Not available in POSIX or Win32, but ACE
iImplementation Is available for all OS's.
. Only If
the writer Is in the critical section they are
blocked.

a IS all
are

TV Semaphores, Recursive Mutex

e The “usual’ behaviour...

— Decrement semaphore on acquire and block If
semaphore val ue < 0

— Become unblocked is semaphore val ue 0

— Increment semaphore value on unlock.

may be reacquired by the
same thread/process (e.qg. for callbacks where
the service routine may be reentered while the
other one Is waiting for a resource).

TU Guards ©)

« A more convenient way to use Locks.

A guard may work with any lock type.
It Is a template class

— Lock: : acqui r e is called in the
CTOR of class Guar d

— | ock: : rel ease Inthe DTOR.

void critical()

ACE Guard <ACE _Semapore> guard(d obal Sem ;
...do the critical job ...

TU Atomic Operations &)

 Similar to guards, ACE provides a template class
for atomic operations.

* Includes the “usual operators” for basic types
+ 4+ - - +:, - = == >:’ — <:,

ACE Atom c_Op <ACE Thread Miutex, int> cThreads;

I nt svc(){
cThr eads++;
doSonet hi ng() ;
cThreads--;

TV Condition Variables ©)

* The ACE Condi ti on<cl ass MUTEX> Class IS
used to of a
condition variable.

 The task acquires the mutex and then waits on
the condition. If it Is false the mutex Is unlocked
and the task Is suspended

(the mutex Is locked for a very short time only).

 The task that wants to signal a condition (one or
all waiting threads) also acquires the mutex first.

* Autocontrol DAQ system

— tasks on the same machine
anal ysis.wait();
readQut Start Up() ;
spawnAnal ysi s() ; ///////*'readCut.signal();

anal ysi s. broadcast () ; // Now data fl ows!

—

anal ysis.wait();
val =r eadout . wai t (DELAY) ;
I f (val==-1) alarm);
el se
di spl aySt at us();

TV Miscellaneous @)

(Thread_Barrier, Process Barrier)

— Synchronize threads or processes at
one rendez-vous point.
(Thread Specific Storage)

— Private data that belongs to the thread is made
“logically” global to a program.

— Better performance due to avoidance of locking.

— Example: the er r no variable is always global, but
returns the last error number of the thread!

TV Outlook ©)

o Distributed synchronisation
— Centralized

— No transparent distributed locking,
no condition variables or barriers yet.

algorithm available

— check _deadl ock(ACE_Token_ Proxy *proxy) returns
0 If acqui r e causes a deadlock.

— Only for use with the token proxy, not ordinary
semaphores, mutexes, etc.

« Method method
In order to simplify synchronized
access to a shared resource.

 Can be used as in a stream.
o Suitable for producer/consumer problems.
* For taking advantage of parallelism.

« Alleviates clients from being blocked and
simplifies the implementation of servers.

— Requests can be queued

[Cllent] ? 2: Parse

1: Make query request

E=n

3. Enqueue query,

4. Make queries

L

Multithreaded i

\ Active Object /

Sending back a reply is not shown here.

TU Interaction Diagram &

Node A . Node B

Client DB Server Query Executor

Send: query 1»1

! | Enqueue query 1
Send: query 2 g

T Enqueue query 2||Execute query 1
<8

I

Execute query 2

g T),

The Active Object may be multithreaded

T ACE Task Q)

cl ass QExecutor : ACE Task <ACE MI_ SYNCH>

{
Qexecutor(int n_threads) {

/'l Make use of a multithreaded system
t hi s->activate(THR_NEW LWP, n_t hreads);

}

I nt put (ACE Message Bl ock *nb) {
return this->putq (nb);
}

i nt svc() {
ACE Message Bl ock *nb;
for (;;) {
this->getq(nb); // get the query
(nb- >base); // execute it!

TU Active Object &

* Client calls the objects method, but...
¢ A IS queued.

e State information Is encapsulated together with
the actions that shall be executed in the thread.

» Different behaviours possible (query, update)

 The active object retrieves the
method object from a queue and calls a hook.

« The queue for the method objects can be
used for these objects (RT!).

TV Example - Retrieve Event

class DB : ACE Task <ACE MI_ SYNCH>

{
int open() { this->activate(THR_NEWLWP),; }

I nt svc() {
ACE Message Bl ock *nb;
aut o_pt r <ACE_Met hod_(bj ect & no)
(this->activation_queuec dequeue D)) ;

rm-); /] get the query
}

ACE Fut ur e<Ecal Event > get Ecal Event ([..]) {
ACE Fut ure<kcal Event> result;
t hi s->activati on_queue_
(ne thi s, [.], result));
return res ;
}
¥

TU MO returns Future ©)

class Ecal MO : public ACE Met hod (bject {
Ecal MO (DB* db, [.], ACE _Future<Ecal Event>& r){
/'l make | ocal copies of the paraneters }

vi rt ual int {
/'l make the query to the OODBMS
}

Ecal Event e = oodbns_.retrieve([.]);
return this->futureResult @' e);
b

int main (int argc, char* argv[]) {
DB db(“jun98”, “aug98”, “H2");
ACE_Fut ur e<Ecal Event > e[100] ;
for (int i =0; 1 < 99; i++)
e[i] = db. get Ecal Event([..]); // asynchronous

for (int i =0; 1 < 99; i++)
e[i].get(tnpEvent), doAnal ysis(tnpEvent);

TU Trace with Futures ©)

main DB class OODBMS

make query 1

< Enqueue query 1
return future

make query 2

Execute query 1

< .
return future

return results

Enqueue query 2 I
b

Execute query 2

TU ACE Size ©)

o Solaris 2.7, without debug information:
as shared library (5.4 MB w. debug info)
as static library

* Build of library components possible
— gmake ACE COMPONENTS=0S ...

— OS, Utils, Logging, Threads, Demux,
Connection, Sockets, IPC, Svcconf,
Streams, Memory, Token, Other

— No consistency checks available, user has to know,
what his program needs

(SLAC)
— Level-3 trigger farm software, distributed histograms

(Fermilab)
— Level-3 and VME readout

 High Frequency Active Aurorial Research
Program * " (AIr Force and Naval RL)

— used for control and data acquisition

— Option trading desk software

« ACE

+ TAO (The ACE ORB)

— CORBA 2.2 compliant ORB, real-time extensions
» Newsgroup:
« Commercial Support

— WWW.iverace.com

