
ACE™ - The ADAPTIVE
Communication Environment

Johannes Gutleber
Vienna University of Technology, Austria

CERN, Switzerland

An
Adaptive Communication

Environment

Overview

• Object Oriented Terminology

• ACE Wrappers

• Streams

• Message Demultiplexing

• Break!

• Service Configuration

• Tasks and Active Objects

• Testimonies

45 minutes

45 minutes

20 minutes

Example

• xy-table, detector test bed

• Radioactive source moves over area

• At each position take data

• Analyse data and store to disk

A Traditional Approach

• Write C Program that contains
– Control of table

– Analysis of data

– Transfer to disk

• Problems that could occur (test beams?)
– CPU power to small for all tasks -> distribute

– Local disk space not big enough -> transfer data

– Include different detectors & readouts -> configure

Modification may be difficult, due to lack of abstraction!

Toolkit/Framework Approach

• Control/analysis tasks are encapsulated
– Submit required version to scheduler (AO)

– If CPU power insufficient Õ execute on other CPU

• Communication is encapsulated
– Easier to add/change disk and network access

• Tools alleviate from synchronisation issues
– … that one tempts to forget anyway ...

This approach does not solve performance problems!

Toolkit

• A library of related classes.

• The OO equivalent of subroutine libraries.
– General purpose lists, the C++ IO stream, Mutexes

• The programmer writes the main body of the
application and calls the code he wants to use.

Main loop Class Library

Class Library

Classes and Components

• Classes in an object-oriented toolkit
– Represent the useable entities
– A class corresponds to a resource

– Functions for operating on a resource are provided

– e.g. IPC (file descriptor - open, close, read, write)

• Components in a toolkit
– Are collaborating classes
– A functionality is presented through a clean interface
– e.g. IPC streams for UDP, TCP, VME: a >> b

• A set of cooperating classes that make up a
reusable design for a specific class of software.

• It defines how objects
collaborate, their
responsibilities and
the thread of control.

• The programmer reuses
the main body and writes
the code it calls.

Framework

Framework

Main
loop

Application

Application

Class Library

Class Library

Classes

UDPFIFO

Toolkit Relation Overview

Frameworks and
Components have

standardised interfaces,
although their

implementations may
be different for different

cases. Both consist of
collaborating classes.

Component

IPC

Framework

Applications

ACE

• ACE is a multi-layer object-oriented toolkit.
– It comprises frameworks and components.

• Implements several Design Patterns.
– A pattern describes a solution for a problem that

occurs over and over again in a general way.

• Aims at achieving platform independence.

• Can be used to
– implement applications or

– framework extensions.

Components of ACE

OS Adaption Layer

• C++ wrappers shield upper levels from different
operating system APIs (Posix, VxWorks, Win32).

• Provides access to different thread and
synchronization packages.

• Eases access to different IPC mechanisms.

• Provides integration of OS calls into C++ code.

It facilitates portability,
it does not provide a Virtual Machine!

Object-Oriented OS API

API Win32 UNIX VxWorks

SemaphoreID String Number Number
Scheduler policy priority+policy priority
New process CreateProcess fork/exec fork/exec
File Read ReadFile/overlap pread lseek/read
Thread create AfxBeginThread pthread_create taskSpawn
Main argc/argv/env argc/ergv/env spa main args

Although modern OS provide similar
functionality, the interfaces are different.

The ACE_OS:: Namespace

• A name space with one operating system API
for all supported platforms (best effort only).

• Input/Output facilities to work with handles

• Handles that can be used with any IPC form.
IPC SAP provide common operations and address
classes for pipes, queues, sockets, streams.

• Threads, processes, locks and signals.

• Functions that may not be supported everywhere
– e.g.: thread suspend/resume (OS.h file)

Adaptive Service eXecutive

• A Framework for connecting services in order to
build a new application.

• Pipes to connect programs: 1964 McIlroy

• Components with narrow interface: 1969 McIlroy

• Streams as pattern: 1976 Dave Parnas

• Support software toolkit: 1994 D. Schmidt

A B C

Ingredients

• Uniform interface to all message oriented IPC
mechanisms (the IPC SAP):
– open, close, send, recv, send_n, recv_n

– Allows easy reconfiguration of communication
software (exchange of transport layer).

• Offers a Processing Stream facility (Threads).

• A service may be exchanged at run-time.

• Event Processor components.
– (Acceptor, Svc_Handler, Event_Handler).

• Uses inheritance and object composition to link
together service Modules.
– Inherit from a Thread class and provide service

– compose them with IPC links

• A Stream is an object to configure and execute
services. It consists of inter-connected Modules.

• Modules are objects that decompose the
application into a series of interconnected layers.
They are the stream chain elements.

The Stream Facility

The ASX Stream Class

• Example: xy-table DAQ station
– receive x,y values from serial line

– calculate dx/dt, dy/dt and format the values

– send them to operator over ethernet

– same thing in other direction for control

Design with Streams

SDecode

Multiplexor

dedicated Ethernet

Multiplexor

putq(mb)

::svc() {getq(mb); operation(); putq(mb);}

::handle_input() {
 recv(Handle, mb);

 putq(mb);
}

EEncodeEDecodeSEncode

Data Processing Display

Bytes

Values

Structures

XY - Table OODBMS

Important Participants

• Push, pop (Stream class)
– Add/remove a modules to/from the stream.

• put/get (Task class)
– Insert/remove message to/from a stream queue.

• svc

– Service routine of a Service Handler class or a Task
class. Within this thread of control data can be
received, processed and forwarded.

Make it work

Task* Decode, Encode;
Task* DataTrans;
Module A(“Serial”,

Decode, Encode);
Module B(“DtProcess”,

DtProcess, DtProcess);
Module C(“ENet”,

Encode, Decode);
[…]
Stream mainStream;
mainStream.push(A);
mainStream.push(B);
mainStream.push(C);
[…]

mainStream.wait();

Decode

Task

Encode

Module

IPC

Open SDecode

class SDecode: public Task<ACE_SYNCH> {
 public:
 virtual int svc();
 virtual int open();
 virtual int put(…
 private:
 ACE_TTY_IO dev;
 ACE_DEV_Connector con;
};

int SDecode::open()
{ // read from serial line and pass to analyzer
 con.connect (dev, ACE_DEV_ADDR (“/dev/somedevice”);
 ACE_TTY_IO::Serial_Params params;
 params.baudrate = 9600;
 […]
 dev.control (ACE_TTY_IO::STEPARAMS, ¶ms);}

SDecode

int SDecode::svc()
{ // read from serial line and pass to analyzer
 while (end != 1) {
 dev.recv_n(&readBuffer, sizeof(readBuffer));
 XYTData xytdata(&readBuffer);
 mb = new ACE_Message_Block(xytdata);
 this->put_next(mb); // async if next has svc
 }
}

int SDecode::put(ACE_Message_Block* m,
 ACE_Time_Value* timeout)

{ // SDecode never gets anything from other tasks
 // aparts from the message to stop
 end = 1;
 this->release(mb);
}

SEncode

int SEncode::svc()
{ // read from in queue and drive x-y table
 while (1) {
 this->getq(mb);
 if (mb->msg_type() != ACE_Message_Block::MB_HANGUP)
 break;
 dev.send_n(… // Send data to x-y table
 this->release(mb)
 }
 this->sibling->put(mb); // pass to other task in module
 return 0;
}

int SEncode::put(ACE_Message_Block *m, ACE_Time_Value *to)
{ // Called by other threads.
 // Just enqueue message into local queue
 this->putq(mb);
}

Variation I of the Theme

• Have only one class instead of Encode/Decode
– share the device (explicit synchronisation)
– in svc routine, alternatively perform tasks

• if (this->is_reader()) read_device

• if (this->is_writer()) write_device

Data Processing
int DtProcess::svc(){
 while (1) {
 this->getq(mb);
 if (mb->msg_type() != ACE_Message_Block::MB_HANGUP)
 break;
 if (this->is_reader()) {
 // calc dx/dt, dy/dt, calc strip number, hits, …
 mb = new ACE_Message_Block(fullData);
 } else {
 // calc x,y from chosen strips, duration from energy
 // parameter, …
 mb = new ACE_Message_Block(xytData);
 this->put_next(mb);
 return 0;
}

int DtProcess::put(ACE_Message_Block *m, ACE_Time_Value *t)
{ this->putq(mb); }

Variation II of the Theme

• Don’t perform tasks in svc routine
– Perform operations in put routines directly

– Share the thread of the caller

– Performance improvement if tasks do only little
processing and at high message rates.

Alternative Invocations

put

put

High performance
good for single process solutions

svc

svc

svc

Low performance
good for multiple processes

put

• A key part in distributed systems
– Assigning incoming messages to the processors

(= dispatching).

– Reacting to timeouts, messages (in/out), interrupts.

• Is part of other patterns
– Connection accept, Active object.

Reactor and Proactor patterns

Event Demultiplexing

Reactor and Proactor
• Reactor

– Handle concurrent (interleaved) service requests
– dispatch requests to responsible event handlers.

– Synchronous event processing

• Proactor
– Demultiplexing to asynchronous operations

(the process of dispatching is still synchronous),

– Event processing based on completion of events
(a callback that is also processed synchronously).

Example: Data Server

• Peers want to access files on one machine

request data
do analysis

do analysis

send events

local operator
terminal

First Approach

• One thread per connection.
– Concurrency control will degrade performance.

– With many threads context switching will influence
the quality of the service as well.

– Portability: Semantics of I/O operations differ on
different operating system platforms.

– Different sources difficult to integrate (stdin, socket).

Use Reactor pattern

Reactor

• One handler type for each type of service
– accept connection, handle input, handle timeout,

handle output, close connection.

• Register handler for an input with Reactor.

• Dispatcher synchronously demultiplexes and
notifies the Reactor object.

• Reactor synchronously calls back the
appropriate event handler routine that
processes the input.

Interaction Diagram

Client Reactor

Establish Connection

Node A Node B

ConnAccept

Register a
handler for
incoming
messages.

HandleSend

Confirm Connection

Send Data Dispatch to the handler

Read Data

This is a simplified diagram.

Implementation Example
class ConnAccept : public Event_Handler {…}
class HandleSend : public Event_Handler {…}

ConnAccept::ConnAccept() {
 Reactor::instance()->register_handler (this, ACCEPT_EVENT);
}

ConnAccept::handle_event() {
 new HandleSend(Handle);
}

HandleSend::HandleSend(HandleT H) {
 Reactor::instance()->register_handler (this, READ_EVENT);
 Reactor::instance()->schedule_timer (this, 0, TIMEOUT);
}

main() {
 Reactor::instance->()run_event_loop(); // Singleton
}

Implementation Contd.
int HandleSend::handle_input(ACE_HANDLE) {
 // share thread with Reactor
 aHandle.recv(&localBuffer);
 if (localBuffer contains EndOfTransmission marker)
 return -1; // implicitly call handle_close

 … do the database access and send back the values …

 aHandle.send(results);
 return 0;
}

int HandleSend::handle_timeout(ACE_Time_Value& t) {
 return -1;
}

HandleSend::handle_close() {
 aHandle.close(), delete this;
}

Service Specification

• Single method interface
– handle_event(EventT Event) procedure,

– Switch/case on event in the procedure.

• Multiple method interface
– handle_accept, handle_input,
handle_output, handle_timeout,

handle_close procedures.

– Predefined classes (concrete event handlers) for
different events are available in ACE for
Acceptor, Connector, Task (Svc_Handler)

Advantages of Reactor

• Separation of concerns
– Dispatching and service implementation are

decoupled → easier extensibility, reuse services

• Decoupling of application from data transfer
– Easier design, modification and extension.

• Increased portability.
– UNIX demultiplexing: select, poll

– WinNT demultiplexing:
WaitforMultipleObjects

• Serialisation (lock free service implementation).

Asynchronous services can use the Proactor

Disadvantages of Reactor

• Restricted applicability.
– OS must support abstract handles for all events.

• More difficult to debug than a flat design.

• Non-preemptive
– Service execution will block further requests.

– Service routine as threads or Active Objects raises
the same problems as in ‘thread per connection’
therefore...

Cut!

Proactor

• For handling the completion of
asynchronous operations.

• The result of an asynchronous operation is
queued into a well known location.

• A callback is registered with a completion
dispatcher that notifies the service routine when
the operation completes.

• Only applicable if the operating system supports
asynchronous operations (aioread on Solaris).

Central Data Recording

CDR handler

Completion
Dispatcher

Disk

OS

1: Get file

4: file read completes

2: Parse
request

and register
aioread

3:
 R

ea
d

of
 fi

le
 c

om
pl

et
es

6: socket aiowrite file

7: write completes

8:
 w

rit
e

co
m

pl
et

e
no

tif
y

5:
 re

ad
 c

om
pl

et
e

no
tif

y

CDR client

CDR Request Description

• After a connection a CDR handler is created and
socket is read synchronously.

• CDR handler registers and issues an
asynchronous read for the requested data.

• aioread completes and the completion and
dispatcher notifies the CDR handler.

CDR contd.

• The CDR handler sends the file with a socket
aiowrite command asynchronously and
registers itself as a completion handler.

• After the write has completed the OS notifies
the completion dispatcher.

• The dispatcher notifies the completion handler.

Implementation Example
class CDRHandler : public ACE_Handler {
 // called when read of data from disk completes
 virtual void handle_read_file(
 const ACE_Asynch_Transmit_File::Result& result);
 // called when a write to the socket completes
 virtual void handle_write_stream(…);
 ACE_Handle handle (void) const {
 return this->outputStream.get_handle(); // handle for ws
 }
 ACE_Asynch_Write_Stream ws; // for writing to socket
 ACE_Asynch_Read_File rf; // for reading data from disk
};

CDRHandler::CDRHandler() {
 ws.open(*this); // uses handle from outputStream
 ACE_Message_Block *mb = new ACE_Message_Block(LENGTH);
 rf.open(*this, fhandle); // pass self as completion handler
 rf.read(*mb, mb->size());
}

Implementation contd.
void CDRHandler::handle_read_file (const
 ACE_Asynch_Read_File::Result& result)
{
 if (result.success()) {
 this->ws.write(result.message_block(),
 result.bytes_transferred ());
 if (file size > size transferred)
 … initiate another asynchronous read …
 }
};

void CDRHandler::handle_write_stream(…) {
 if (result.success()) {
 n = result.bytes_to_write()-result.bytes_transferred();
 if (n != 0)
 … initiate another asynchronous write …
 else
 ws.close, rf.close(), done = 1;
}

CDR Main
static int done = 0;

int main (int argc, char* argv[]) {
 … accept a connection from a client using reactor …
 CDRHandler handler;
 while (!done)
 ACE_Proactor::instance()->handle_events();

 return 0;
}

Benefits and Drawbacks

• It is possible to have more than one requests
that work interleaved without having the
complexity of multiple threads/processes.

• But asynchronous operations may lead to
indeterministic behaviour.

• Introducing state information into the
completion handler complicates programming.
– Imagine the case of several clients

Service Configuration

• Each beam test environment will have its own,
specific “reconstruction” algorithms
– Microstrip gas chambers

– pixel detectors

– calorimeters (crystal arrays)

• The service modification must be transparent for
clients
– For those who write the interface to the OODBMS

– For those who write the on-line framework

Service Configurator Pattern

• Decouples the behaviour of services from
the point in time at which
service implementations are configured.

• Use it when services shall be initiated,
suspended, resumed and terminated
dynamically.
– All other use cases fall back to this one.

• Do not use in case of security restrictions or
when the service is coupled too tightly to its
context.

class TBAnalysis
 :ACE_Service_Object
{
 handle_input(ACE_Handle fd)
 {
 ReconstructMSGCReconstructMSGC();();
 }

 init (int argc,
 char** argv)
 {
 // get data from
 // different crates

 SetPortNumber;
 }

};

TBAnalysis analysis;

Exchange a Service on the Fly

#svc.conf file:
#Terminate Handler
remove TBAnalysis
#Reconfigure
dynamic TBAnalysis
Service_Object *
~/ECAL.dll:analysis
“-Port 5005”

class TBAnalaysis
 :ACE_Service_Object
{
 handle_input(ACE_Handle fd)
 {
 ReconstructECALReconstructECAL;;
 }
};

Service Repository

• The Service Repository centrally manages the
configured concrete services of the application.

• A configuration file (svc.conf) is used to
interface to this Service Repository.

• Services can be
– configured as static or dynamic,

– added and removed,

– suspended and resumed,

– Modules can be pushed onto, popped from stream.

The Service

• Is a class that offers a predefined interface to
dynamically configure a service.
– init(int argc, char** argv)

is the entry point of the service and called
automatically when the service get activated.

– fini(void) serves as a hook for implementing
controlled removal of the service.

– suspend/resume may be implemented.

– info(char**, size_t) - implement this to
provide information about the service.

Concrete Service

• Inherits from Service and contains a concrete
implementation of the service.

Service
Repository

init()
fini()
suspend()
resume()
info()

Service A Service B

Shared_Object

Event_Handler

Service

ACE specific part that
provides service
routines,
event handlers.

Where to Use

• Services have to be configured at run-time.
– Use of pipes, streams, sockets, raw devices, ...

• Implementation of services have to be
exchanged transparently
– Compare the Java applet/servlet mechanisms

– Compare Mobile Agent facilities

• Dynamic reconfiguration
– for plug & play like operation.

Important Issues

• Indeterminism and reduced Reliability.
– An application that works fine with a specific service

or configuration may exhibit completely different
behaviour with another one.

• Overhead
– Could be a time problem in mainstream OS’s.

– VxWorks only knows dynamic linking and is a real-
time system, so…

• Complexity of service management.

Concurrency Mechanisms

• Managers for Threads and Processes,

• Guards, atomic operations,

• Conditions,

• Synchronization Wrappers for basic locks
– Mutex, Semaphore,

– Barrier.

• The Active Object pattern.

Managers

• Components that contain a set of mechanisms to
manage groups of threads or processes.
– spawn, suspend, resume, wait.

• Process manager spawn operation copies of the
process image and passes options, whereas a
thread manager spawn operation starts a given
method as a thread.

• ACE_Process and ACE_Thread classes
exist for direct use of processes and threads.

Mutex

• A mutual exclusion lock is a binary semaphore
(implementing a spin-lock algorithm)

• for controlling access to one shared resource.

• Typical interface:
– acquire, try_acquire, release

• Available for threads and processes.

RW_Mutex

• Readers/writers lock is applicable if a resource is
rather read than modified.

• Not available in POSIX or Win32, but ACE
implementation is available for all OS’s.

• Several tasks may acquire a read lock. Only if
the writer is in the critical section they are
blocked.

• Getting a write lock is only possible if all
read/write locks are free.

Semaphores, Recursive Mutex

• The “usual” Semaphore behaviour…
– Decrement semaphore on acquire and block if

semaphore value < 0

– Become unblocked is semaphore value = 0

– Increment semaphore value on unlock.

• Recursive Mutexes may be reacquired by the
same thread/process (e.g. for callbacks where
the service routine may be reentered while the
other one is waiting for a resource).

Guards
• A more convenient way to use Locks.

• A guard may work with any lock type.
It is a template class
– Lock::acquire is called in the

CTOR of class Guard

– lock::release in the DTOR.

void critical()

{
 ACE_Guard <ACE_Semapore> guard(GlobalSem);
 … do the critical job …

}

Atomic Operations

• Similar to guards, ACE provides a template class
for atomic operations.

• Includes the “usual operators” for basic types
++, --, +=, -=, ==, >=, = <=, …

ACE_Atomic_Op <ACE_Thread_Mutex, int> cThreads;

int svc(){
 cThreads++;
 doSomething();
 cThreads--;
 …
}

Condition Variables

• The ACE_Condition<class MUTEX> class is
used to block on a change in a state of a
condition variable.

• The task acquires the mutex and then waits on
the condition. If it is false the mutex is unlocked
and the task is suspended
(the mutex is locked for a very short time only).

• The task that wants to signal a condition (one or
all waiting threads) also acquires the mutex first.

Example for Condition

• Autocontrol DAQ system
– tasks on the same machine

spawnAnalysis();
analysis.broadcast();

analysis.wait();
readOutStartUp();
readOut.signal();
// Now data flows!

analysis.wait();
val=readout.wait(DELAY);
if (val==-1) alarm();
else
 displayStatus();

Miscellaneous

• Barrier (Thread_Barrier, Process_Barrier)
– Synchronize threads or processes at

one rendez-vous point.

• TSS (Thread Specific Storage)
– Private data that belongs to the thread is made

“logically” global to a program.

– Better performance due to avoidance of locking.
– Example: the errno variable is always global, but

returns the last error number of the thread!

Outlook

• Distributed synchronisation
– Centralized Token server

– No transparent distributed locking,
no condition variables or barriers yet.

• Deadlock detection algorithm available
– check_deadlock(ACE_Token_Proxy *proxy) returns
0 if acquire causes a deadlock.

– Only for use with the token proxy, not ordinary
semaphores, mutexes, etc.

Task

• Method execution is decoupled from method
invocation in order to simplify synchronized
access to a shared resource.

• Can be used as in a stream.

• Suitable for producer/consumer problems.

• For taking advantage of parallelism.

• Alleviates clients from being blocked and
simplifies the implementation of servers.
– Requests can be queued

Data Base Query Server

TCP handler

OODBMS

1: Make query

2: Parse
request

Client

Multithreaded
Active Object

Multithreaded
Active Object

3: Enqueue query

4: Make queries

Sending back a reply is not shown here.

Interaction Diagram

Client DB Server Query Executor

Send query 1

Send query 2
Enqueue query 1

Execute query 1

Execute query 2

Node A Node B

Enqueue query 2

The Active Object may be multithreaded

ACE Task

class QExecutor : ACE_Task <ACE_MT_SYNCH>
{
 Qexecutor(int n_threads) {

// Make use of a multithreaded system
this->activate(THR_NEW_LWP, n_threads);

 }

 int put (ACE_Message_Block *mb) {
return this->putq (mb);

 }

 int svc() {
ACE_Message_Block *mb;
for (;;) {

this->getq(mb); // get the query
SQL_QuerySQL_Query (mb->base); // execute it!

}
};

Active Object

• Client calls the objects method, but...

• A Method Object is queued.

• State information is encapsulated together with
the actions that shall be executed in the thread.

• Different behaviours possible (query, update)

• The active object retrieves the
method object from a queue and calls a hook.

• The queue for the method objects can be
used for scheduling these objects (RT!).

class DB : ACE_Task <ACE_MT_SYNCH>
{
 int open() { this->activate(THR_NEW_LWP); }

 int svc() {
ACE_Message_Block *mb;
 auto_ptr<ACE_Method_Object> mo

 (this->activation_queue_.dequeue ());
mo->call(); // get the query

}
 ACE_Future<EcalEvent> getEcalEvent([…]) {
 ACE_Future<EcalEvent> result;
 this->activation_queue_.enqueue

(new EcalMO(this, […], result));
 return result;
 }
};

Example - Retrieve Event

MO returns Future
class EcalMO : public ACE_Method_Object {
 EcalMO (DB* db, […], ACE_Future<EcalEvent>& r){
 // make local copies of the parameters }

 virtual int call() {
 // make the query to the OODBMS
 EcalEvent e = oodbms_.retrieve([…]);
 return this->futureResult_.set (e);
 }
};

int main (int argc, char* argv[]) {
 DB db(“jun98”, “aug98”, “H2”);
 ACE_Future<EcalEvent> e[100];
 for (int i = 0; i < 99; i++)
 e[i] = db.getEcalEvent([…]); // asynchronous

 for (int i = 0; i < 99; i++)
 e[i].get(tmpEvent), doAnalysis(tmpEvent);

Trace with Futures

main DB class OODBMS

make query 1

make query 2

Enqueue query 1

Execute query 1

Execute query 2

Enqueue query 2

return future

return future

return results

ACE Size

• Solaris 2.7, without debug information:
– 2.4 MB as shared library (5.4 MB w. debug info)

– 3.3 MB as static library

• Build of library components possible
– gmake ACE_COMPONENTS=OS …

– OS, Utils, Logging, Threads, Demux,
Connection, Sockets, IPC, Svcconf,
Streams, Memory, Token, Other

– No consistency checks available, user has to know,
what his program needs

ACE Outside CERN

• BaBar (SLAC)
– Level-3 trigger farm software, distributed histograms

• DØ (Fermilab)
– Level-3 and VME readout

• High Frequency Active Aurorial Research
Program “HAARP” (Air Force and Naval RL)
– used for control and data acquisition

• Merril Lynch
– Option trading desk software

More Information

• ACE
http://www.cs.wustl.edu/~schmidt/ACE.html

• TAO (The ACE ORB)
http://www.cs.wustl.edu/~schmidt/TAO.html
– CORBA 2.2 compliant ORB, real-time extensions

• Newsgroup: comp.soft-sys.ace
• Commercial Support

– www.riverace.com

Johannes.Gutleber@cern.ch

